862 research outputs found
An inability to exclude visual noise in migraine
- Purpose: People with migraine are relatively poor at judging the direction of motion of coherently moving signal dots when interspersed with noise dots drifting in random directions, a task known as motion coherence. Although this has been taken as evidence of impoverished global pooling of motion signals, it could also arise from unreliable coding of local direction (of each dot), or an inability to segment signal from noise (noise-exclusion). The aim of this study was to determine how these putative limits contribute to impoverished motion processing in migraine.
- Methods: Twenty-two participants with migraine (mean age, 34.7 ± 8.3 years; 16 female) and 22 age- and sex-matched controls (mean age, 34.4 ± 6.2 years) performed a motion-coherence task and a motion-equivalent noise task, the latter quantifying local and global limits on motion processing. In addition, participants were tested on analogous equivalent noise paradigms involving judgments of orientation and size, so that the specificity of any findings (to visual dimension) could be ascertained.
- Results: Participants with migraine exhibited higher motion-coherence thresholds than controls (P = 0.01, independent t-test). However, this difference could not be attributed to deficits in either local or global processing since they performed normally on all equivalent noise tasks (P > 0.05, multivariate ANOVA).
- Conclusions: These findings indicate that motion perception in the participants with migraine was limited by an inability to exclude visual noise. We suggest that this is a defining characteristic of visual dysfunction in migraine, a theory that has the potential to integrate a wide range of findings in the literature
Microstructural analysis of varistors prepared from nanosize ZnO
ZnO nanoparticles were prepared by a solid state pyrolysis reaction of zinc acetate dihydrate and oxalic acid
dihydrate at 500uC. The course of reaction at various temperatures was followed by XRD. Subsequently varistors
were fabricated from this nano-ZnO material by solid state mixing with various oxide additives and sintering to
1050uC. The microstructure of the sintered material was studied using XRD, field emission SEM (FESEM), and
EDX, and ZnO grains, bismuth rich regions and spinel phases were identified. Discs made from oxide doped nano-
ZnO show considerably higher breakdown voltage (656¡30 V mm21) compared to those prepared from
micrometre sized ZnO (410¡30 V mm21) and commercial varistors (454¡30 V mm21). However, varistors made
from the nano-ZnO show very low densification and high leakage current, making them unsuitable for device
fabrication
Comparison of the Oxidation State of Fe in Comet 81P/Wild 2 and Chondritic-Porous Interplanetary Dust Particles
The fragile structure of chondritic-porous interplanetary dust particles (CP-
IDPs) and their minimal parent-body alteration have led researchers to believe
these particles originate in comets rather than asteroids where aqueous and
thermal alteration have occurred. The solar elemental abundances and
atmospheric entry speed of CP-IDPs also suggest a cometary origin. With the
return of the Stardust samples from Jupiter-family comet 81P/Wild 2, this
hypothesis can be tested. We have measured the Fe oxidation state of 15 CP-IDPs
and 194 Stardust fragments using a synchrotron-based x-ray microprobe. We
analyzed ~300 nanograms of Wild 2 material - three orders of magnitude more
material than other analyses comparing Wild 2 and CP-IDPs. The Fe oxidation
state of these two samples of material are >2{\sigma} different: the CP-IDPs
are more oxidized than the Wild 2 grains. We conclude that comet Wild 2
contains material that formed at a lower oxygen fugacity than the parent body,
or parent bodies, of CP-IDPs. If all Jupiter-family comets are similar, they do
not appear to be consistent with the origin of CP-IDPs. However, comets that
formed from a different mix of nebular material and are more oxidized than Wild
2 could be the source of CP-IDPs.Comment: Earth and Planetary Science Letters, in pres
Exploring rumen microbe-derived fibre-degrading activities for improving feed digestibility
Ruminal fibre degradation is mediated by a complex community of rumen microbes, and its efficiency is crucial for optimal dairy productivity. Enzymes produced by rumen microbes are primarily responsible for degrading the complex structural polysaccharides that comprise fibre in the plant cell walls of feed materials. Because rumen microbes have evolved with their ruminant hosts over millions of years to perform this task, their enzymes are hypothesised to be optimally suited for activity at the temperature, pH range, and anaerobic environment of the rumen. However, fibre-rich diets are not fully digested, which represents a loss in potential animal productivity. Thus, there is opportunity to improve fibre utilisation through treating feeds with rumen microbe-derived fibrolytic enzymes and associated activities that enhance fibre degradation. This research aims to gain a better understanding of the key rumen microbes involved in fibre degradation and the mechanisms they employ to degrade fibre, by applying cultivation-based and culture-independent genomics approaches to rumen microbial communities of New Zealand dairy cattle. Using this knowledge, we aim to identify new opportunities for improving fibre degradation to enhance dairy productivity.
Rumen content samples were taken over the course of a year from a Waikato dairy production herd. Over 1,000 rumen bacterial cultures were obtained from the plant-adherent fraction of the rumen contents. Among these cultures, two, 59 and 103 potentially new families, genera and species of rumen bacteria were identified, respectively. Many of the novel strains are being genome sequenced within the Hungate 1000 rumen microbial reference genome programme, which is providing deeper insights into the range of mechanisms used by the individual strains for fibre degradation. This information has been used to guide the selection of rumen bacterial strains with considerable potential as fibrolytic enzyme producers in vitro, with the intent of developing the strains so that their enzymes may be used as feed pre-treatments for use on farm. Culture-independent metagenomic approaches were also used to explore the activities involved in fibre degradation from the rumen microbial communities. Functional screening has revealed a range of novel enzymes and a novel fibre disrupting activity. Enrichment for the cell-secreted proteins from the community revealed evidence of a diverse range of cellulosomes, which are cell-surface associated multi-enzyme complexes that efficiently degrade plant cell wall polysaccharides. Biochemical and structural characterisation of these proteins has been conducted.
In conclusion, cultivation and culture-independent genomic approaches have been applied to New Zealand bovine rumen microbial communities, and have provided considerable new insights into ruminal fibre degradation processes. Novel activities and bacterial species that display desirable activities on fibrous substrates in vitro are now being explored for their potential to improve ruminal fibre degradation, to allow the development of new technologies that will enhance dairy productivity
An exemplar-based approach to risk assessment: Validating the risk management systems instrument
Using a sample of federal probationers, this study examines the predictive validity of the Risk Management Systems assessment instrument. The results indicate the RMS is predictive of arrest, technical violation, and unsuccessful termination from supervision
Population genomics of a predatory mammal reveals patterns of decline and impacts of exposure to toxic toads
Mammal declines across northern Australia are one of the major biodiversity loss events occurring globally. There has been no regional assessment of the implications of these species declines for genomic diversity. To address this, we conducted a species-wide assessment of genomic diversity in the northern quoll (Dasyurus hallucatus), an Endangered marsupial carnivore. We used next generation sequencing methods to genotype 10,191 single nucleotide polymorphisms (SNPs) in 352 individuals from across a 3220-km length of the continent, investigating patterns of population genomic structure and diversity, and identifying loci showing signals of putative selection. We found strong heterogeneity in the distribution of genomic diversity across the continent, characterized by (i) biogeographical barriers driving hierarchical population structure through long-term isolation, and (ii) severe reductions in diversity resulting from population declines, exacerbated by the spread of introduced toxic cane toads (Rhinella marina). These results warn of a large ongoing loss of genomic diversity and associated adaptive capacity as mammals decline across northern Australia. Encouragingly, populations of the northern quoll established on toad-free islands by translocations appear to have maintained most of the initial genomic diversity after 16 years. By mapping patterns of genomic diversity within and among populations, and investigating these patterns in the context of population declines, we can provide conservation managers with data critical to informed decision-making. This includes the identification of populations that are candidates for genetic management, the importance of remnant island and insurance/translocated populations for the conservation of genetic diversity, and the characterization of putative evolutionarily significant units
The Value of Information for Populations in Varying Environments
The notion of information pervades informal descriptions of biological
systems, but formal treatments face the problem of defining a quantitative
measure of information rooted in a concept of fitness, which is itself an
elusive notion. Here, we present a model of population dynamics where this
problem is amenable to a mathematical analysis. In the limit where any
information about future environmental variations is common to the members of
the population, our model is equivalent to known models of financial
investment. In this case, the population can be interpreted as a portfolio of
financial assets and previous analyses have shown that a key quantity of
Shannon's communication theory, the mutual information, sets a fundamental
limit on the value of information. We show that this bound can be violated when
accounting for features that are irrelevant in finance but inherent to
biological systems, such as the stochasticity present at the individual level.
This leads us to generalize the measures of uncertainty and information usually
encountered in information theory
Black Hole Spin via Continuum Fitting and the Role of Spin in Powering Transient Jets
The spins of ten stellar black holes have been measured using the
continuum-fitting method. These black holes are located in two distinct classes
of X-ray binary systems, one that is persistently X-ray bright and another that
is transient. Both the persistent and transient black holes remain for long
periods in a state where their spectra are dominated by a thermal accretion
disk component. The spin of a black hole of known mass and distance can be
measured by fitting this thermal continuum spectrum to the thin-disk model of
Novikov and Thorne; the key fit parameter is the radius of the inner edge of
the black hole's accretion disk. Strong observational and theoretical evidence
links the inner-disk radius to the radius of the innermost stable circular
orbit, which is trivially related to the dimensionless spin parameter a_* of
the black hole (|a_*| < 1). The ten spins that have so far been measured by
this continuum-fitting method range widely from a_* \approx 0 to a_* > 0.95.
The robustness of the method is demonstrated by the dozens or hundreds of
independent and consistent measurements of spin that have been obtained for
several black holes, and through careful consideration of many sources of
systematic error. Among the results discussed is a dichotomy between the
transient and persistent black holes; the latter have higher spins and larger
masses. Also discussed is recently discovered evidence in the transient sources
for a correlation between the power of ballistic jets and black hole spin.Comment: 30 pages. Accepted for publication in Space Science Reviews. Also to
appear in hard cover in the Space Sciences Series of ISSI "The Physics of
Accretion onto Black Holes" (Springer Publisher). Changes to Sections 5.2,
6.1 and 7.4. Section 7.4 responds to Russell et al. 2013 (MNRAS, 431, 405)
who find no evidence for a correlation between the power of ballistic jets
and black hole spi
- …