94 research outputs found

    Iron-Rich Magnetic Coal Fly Ash Particles Induce Apoptosis in Human Bronchial Cells

    Get PDF
    Svalbard is an arctic archipelago where coal mining generates all electricity via the local coal-fired power station. Coal combustion produces a waste product in the form of particulate matter (PM) coal fly ash (CFA), derived from incombustible minerals present in the feed coal. PM ≀10 ”m (diameter) may be “inhaled” into the human respiratory system, and particles ≀2.5 ”m may enter the distal alveoli to disrupt normal pulmonary functions and trigger disease pathways. This study discovered that Svalbard CFA contained unusually high levels of iron-rich magnetic minerals that induced adverse effects upon human lungs cells. Iron is a well-characterised driver of reactive oxygen species (ROS) generation, a driving force for cell death and disease. CFA physicochemical characterisation showed non-uniform particle morphologies indicative of coal burnt at inefficient combustion temperatures. The bioreactivity (ROS generation) of PM2.5/10 fractions was measured using plasmid scission assay (PSA, DNA damage) and haemolysis assays (erythrocyte lysis), with PM2.5 CFA showing significant bioreactivity. CFA leached in mild acid caused a significant increase in toxicity, which could occur in CFA waste-stores. The CFA and leachates were exposed to a surrogate model of human bronchial epithelia that confirmed that CFA induced apoptosis in bronchial cells. This study shows that CFA containing magnetic iron-rich minerals mediated adverse reactions in the human lung, and thus CFA should be considered to be an environmental inhalation hazard

    Multiple relationships between aerosol and COVID-19: a framework for global studies

    Get PDF
    COVID-19 (Corona Virus Disease 2019) is a severe respiratory syndrome currently causing a human global pandemic. The original virus, along with newer variants, is highly transmissible. Aerosol is a multiphase system consisting of the atmosphere with suspended solid and liquid particles, which can carry toxic and harmful substances; especially the liquid components. The degree to which aerosol can carry the virus and cause COVID-19 disease is of significant research importance. In this study, we have discussed the aerosol transmission as the pathway of SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2), and the aerosol pollution reduction as a consequence of the COVID-19 lockdown. The aerosol transmission routes of the SARS-CoV-2 can be further subdivided into proximal human-exhaled aerosol transmission and potentially more distal ambient aerosol transmission. The human-exhaled aerosol transmission is a direct dispersion of the SARS-CoV-2. The ambient aerosol transmission is an indirect dispersion of the SARS-CoV-2 in which the aerosol act as a carrier to spread the virus. This indirect dispersion can also stimulate the up-regulation of the expression of SARS-CoV-2 receptor ACE-2 (Angiotensin Converting Enzyme 2) and protease TMPRSS2 (Transmembrane Serine Protease 2), thereby increasing the incidence and mortality of COVID-19. From the aerosol quality data around the world, it can be seen that often atmospheric pollution has significantly decreased due to factors such as the reduction of traffic, industry, cooking and coal-burning emissions during the COVID-19 lockdown. The airborne transmission potential of SARS-CoV-2, the infectivity of the virus in ambient aerosols, and the reduction of aerosol pollution levels due to the lockdowns are crucial research subjects

    Hemolysis of PM10 on RBCs in vitro: An indoor air study in a coal-burning lung cancer epidemic area

    Get PDF
    Epidemiological studies have suggested that inhalation exposure to indoor ambient air from coal-burning environments is causally associated with respiratory health risks. In order to explore the toxicological mechanisms behind the adverse health effects, the hemolytic activity of PM10 (particulate matter with an aerodynamic diameter of 10um or less) samples collected from homes burning coal in the recognized China “cancer village” Xuanwei were evaluated and matched against their trace elemental contents. The results demonstrated that the hemolytic activity of indoor PM10 in coal-burning environments ranged from 4.28% to 5.24%, with a clear positive dose-response relationship. Although low dose samples exhibited a reduced hemolytic activity, PM10 could have a toxic effect upon people in a coal-burning indoor environment for extended time periods. The concentrations of analyzed trace elements in PM10 samples ranged from 6966 to 12,958 ppm. Among the analyzed elements, Zn, Ti, Ni, Cu, Pb, Ba, Mn, Cr and V were found at higher concentrations and accounted for over 95% of the total elements. The concentrations of total analyzed elements in the PM10 samples revealed a significant positive correlation with PM10 hemolytic activity. Of the analyzed elements, Zn, Pb and Cs positively correlated with hemolysis, while Li, U and V negatively correlated with the hemolysis of human red blood cells (RBCs). Therefore, the heavy metal elements could be one of the main factors responsible for the hemolytic capacity of indoor PM10 in coal-burning environments

    Multiple relationships between aerosol and COVID-19: A framework for global studies

    Get PDF
    COVID-19 (Corona Virus Disease 2019) is a severe respiratory syndrome currently causing a human global pandemic. The original virus, along with newer variants, is highly transmissible. Aerosols are a multiphase system consisting of the atmosphere with suspended solid and liquid particles, which can carry toxic and harmful substances; especially the liquid components. The degree to which aerosols can carry the virus and cause COVID-19 disease is of significant research importance. In this study, we have discussed aerosol transmission as the pathway of SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2), and the aerosol pollution reduction as a consequence of the COVID-19 lockdown. The aerosol transmission routes of the SARS-CoV-2 can be further subdivided into proximal human-exhaled aerosol transmission and potentially more distal ambient aerosol transmission. The human-exhaled aerosol transmission is a direct dispersion of the SARS-CoV-2. The ambient aerosol transmission is an indirect dispersion of the SARS-CoV-2 in which the aerosol acts as a carrier to spread the virus. This indirect dispersion can also stimulate the up-regulation of the expression of SARS-CoV-2 receptor ACE-2 (Angiotensin Converting Enzyme 2) and protease TMPRSS2 (Transmembrane Serine Protease 2), thereby increasing the incidence and mortality of COVID-19. From the aerosol quality data around the World, it can be seen that often atmospheric pollution has significantly decreased due to factors such as the reduction of traffic, industry, cooking and coal-burning emissions during the COVID-19 lockdown. The airborne transmission potential of SARS-CoV-2, the infectivity of the virus in ambient aerosols, and the reduction of aerosol pollution levels due to the lockdowns are crucial research subjects

    Hemolytic properties of fine particulate matter (PM2.5) in in vitro systems

    Get PDF
    Epidemiological studies have suggested that inhalation exposure to particulate matter (PM) air pollution, especially fine particles (i.e., PM2.5 (PM with an aerodynamic diameter of 2.5 microns or less)), is causally associated with cardiovascular health risks. To explore the toxicological mechanisms behind the observed adverse health effects, the hemolytic activity of PM2.5 samples collected during different pollution levels in Beijing was evaluated. The results demonstrated that the hemolysis of PM2.5 ranged from 1.98% to 7.75% and demonstrated a clear dose–response relationship. The exposure toxicity index (TI) is proposed to represent the toxicity potential of PM2.5, which is calculated by the hemolysis percentage of erythrocytes (red blood cells, RBC) multiplied by the mass concentration of PM2.5. In a pollution episode, as the mass concentration increases, TI first increases and then decreases, that is, TI (low pollution levels) < TI (heavy pollution levels) < TI (medium pollution levels). In order to verify the feasibility of the hemolysis method for PM toxicity detection, the hemolytic properties of PM2.5 were compared with the plasmid scission assay (PSA). The hemolysis results had a significant positive correlation with the DNA damage percentages, indicating that the hemolysis assay is feasible for the detection of PM2.5 toxicity, thus providing more corroborating information regarding the risk to human cardiovascular health

    Concentration, source, and health risk assessment of polycyclic aromatic hydrocarbons: a pilot study in the Xuanwei lung cancer epidemic area, Yunnan Province, China

    Get PDF
    Polycyclic aromatic hydrocarbons (PAHs) are toxic and hazardous volatile environmental pollutants that have been studied as possible major causative agents of lung cancer in Xuanwei. In this paper, indoor and outdoor PM2.5 samples were collected from two homes at different time periods in Hutou, the lung cancer epidemic area in Xuanwei. The results showed that PAH pollution levels from coal combustion in Xuanwei lung cancer epidemic area were significant. The mass concentrations of total PAHs, major carcinogenic compounds, and benzo[a]pyrene-based equivalent concentration (BaPeq) were significantly higher in the coal-using home than in the electricity-using home. For the coal-using home, the PAHs were mainly derived from coal combustion. For the electricity-using home, the PAHs might have been a combination of traffic and coal combustion sources. The human health risk due to inhalation exposure to the PAHs was represented by the incremental lifetime cancer risk (ILCR) of the inhalation exposure. The results showed that the indoor cancer risk for the coal-using home in Xuanwei is higher than that of the electricity-using home and much higher than that of Chinese megacities such as Beijing and Tianjin. Long-term exposure to indoor coal-burning environments containing high levels of PAHs may be one of the main reasons for the high incidence of lung cancer in Xuanwei

    COVID-19 mortality and exposure to airborne PM2.5: A lag time correlation

    Get PDF
    COVID-19 has escalated into one of the most serious crises in the 21st Century. Given the rapid spread of SARS-CoV-2 and its high mortality rate, here we investigate the impact and relationship of airborne PM2.5 to COVID-19 mortality. Previous studies have indicated that PM2.5 has a positive relationship with the spread of COVID-19. To gain insights into the delayed effect of PM2.5 concentration (ÎŒgm−3) on mortality, we focused on the role of PM2.5 in Wuhan City in China and COVID-19 during the period December 27, 2019 to April 7, 2020. We also considered the possible impact of various meteorological factors such as temperature, precipitation, wind speed, atmospheric pressure and precipitation on pollutant levels. The results from the Pearson's correlation coefficient analyses reveal that the population exposed to higher levels of PM2.5 pollution are susceptible to COVID-19 mortality with a lag time of >18 days. By establishing a generalized additive model, the delayed effect of PM2.5 on the death toll of COVID-19 was verified. A negative correction was identified between temperature and number of COVID-19 deaths, whereas atmospheric pressure exhibits a positive correlation with deaths, both with a significant lag effect. The results from our study suggest that these epidemiological relationships may contribute to the understanding of the COVID-19 pandemic and provide insights for public health strategies

    Enhanced transcriptomic resilience following increased alternative splicing and differential isoform production between air pollution conurbations

    Get PDF
    Adversehealth outcomes caused by ambient particulate matter (PM) pollution occur in a 16progressive process, with neutrophils eliciting inflammation or pathogenesis. We investigated the 17toxico-transcriptomic mechanisms of PM in real-life settings by comparing healthy residents living 18in Beijing and Chengde, the opposing ends of a well-recognised air pollution (AP) corridor in China. 19Beijing recruits (BRs) uniquelyexpressed ~12,000 alternativesplicing (AS)-derived transcripts, 20largely elevating the proportion of transcripts significantly correlated with PM concentration. BRs 21expressed PM-associated isoforms (PMAIs) of PFKFB3and LDHA,encoding enzymes responsible 22for stimulatingand maintaining glycolysis. PMAIsof PFKFB3featured different COOH-terminals, 23targeting PFKFB3 to different sub-cellular functional compartments and stimulating glycolysis. 24PMAIs of LDHAhavelonger 3’UTRs relative to those expressed in Chengderecruits (CRs),allowing 25glycolysis maintenance by enhancing LDHAmRNA stability and translational efficiency. PMAIs 26weredirectly regulated by different HIF-1Aand HIF-1Bisoforms. BRs expressed more non-func-27tional Fasisoforms and a resultant reduction of intact Fasproportion is expectedto inhibit the trans-28mission of apoptotic signals and prolong neutrophil lifespan. BRs expressed both membrane-bound 29and soluble IL-6Risoforms insteadof only one in CRs. The presence of both IL-6Risoforms sug-30gested a higher migration capacity of neutrophils in BRs. PMAIs of HIF-1Aand PFKFB3were down-31regulated inChronic Obstructive Pulmonary Disease patients compared with BRs, implying HIF-1 32mediated defective glycolysis may mediate neutrophil dysfunction. PMAIs could explain large var-33iances of different phenotypes, highlighting their potential application as biomarkers and therapeu-34tic targets in PM-induced diseases, which remain poorly elucidated

    Characterization of pulmonary protein profiles in response to zinc oxide nanoparticles in mice: a&nbsp;24-hour and 28-day follow-up study

    Get PDF
    Although zinc oxide nanoparticles (ZnONPs) are recognized to cause systemic disorders, little is known about the mechanisms that underlie the time-dependent differences that occur after exposure. The objective of this study was to investigate the mechanistic differences at 24 hours and 28 days after the exposure of BALB/c mice to ZnONPs via intratracheal instillation. An isobaric tag for the relative and absolute quantitation coupled with liquid chromatography/tandem mass spectrometry was used to identify the differential protein expression, biological processes, molecular functions, and pathways. A total of 18 and 14 proteins displayed significant changes in the lung tissues at 24 hours and 28 days after exposure, respectively, with the most striking changes being observed for S100-A9 protein. Metabolic processes and catalytic activity were the main biological processes and molecular functions, respectively, in the responses at the 24-hour and 28-day follow-up times. The glycolysis/gluconeogenesis pathway was continuously downregulated from 24 hours to 28 days, whereas detoxification pathways were activated at the 28-day time-point after exposure. A comprehensive understanding of the potential time-dependent effects of exposure to ZnONPs was provided, which highlights the metabolic mechanisms that may be important in the responses to ZnONP

    Oxidative capacity and hemolytic activity of settled dust from moisture-damaged schools

    Get PDF
    Exposure to moisture-damaged indoor environments is associated with adverse respiratory health effects, but responsible factors remain unidentified. In order to explore possible mechanisms behind these effects, the oxidative capacity and hemolytic activity of settled dust samples (n = 25) collected from moisture-damaged and non-damaged schools in Spain, the Netherlands, and Finland were evaluated and matched against the microbial content of the sample. Oxidative capacity was determined with plasmid scission assay and hemolytic activity by assessing the damage to isolated human red blood cells. The microbial content of the samples was measured with quantitative PCR assays for selected microbial groups and by analyzing the cell wall markers ergosterol, muramic acid, endotoxins, and glucans. The moisture observations in the schools were associated with some of the microbial components in the dust, and microbial determinants grouped together increased the oxidative capacity. Oxidative capacity was also affected by particle concentration and country of origin. Two out of 14 studied dust samples from moisture-damaged schools demonstrated some hemolytic activity. The results indicate that the microbial component connected with moisture damage is associated with increased oxidative stress and that hemolysis should be studied further as one possible mechanism contributing to the adverse health effects of moisture-damaged buildings.Peer reviewe
    • 

    corecore