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COVID-19 (Corona Virus Disease 2019) is a severe respiratory syndrome currently causing a human global pan-
demic. The original virus, along with newer variants, is highly transmissible. Aerosols are a multiphase system
consisting of the atmosphere with suspended solid and liquid particles, which can carry toxic and harmful sub-
stances; especially the liquid components. The degree to which aerosols can carry the virus and cause COVID-19
disease is of significant research importance. In this study, we have discussed aerosol transmission as the path-
way of SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2), and the aerosol pollution reduction

ﬁiﬁ;ﬁ;ﬁnc aerosols as a consequence of the COVID-19 lockdown. The aerosol transmission routes of the SARS-CoV-2 can be further
COVID-19 subdivided into proximal human-exhaled aerosol transmission and potentially more distal ambient aerosol
PM, 5 transmission. The human-exhaled aerosol transmission is a direct dispersion of the SARS-CoV-2. The ambient
SARS-CoV-2 aerosol transmission is an indirect dispersion of the SARS-CoV-2 in which the aerosol acts as a carrier to spread

Transmission routes the virus. This indirect dispersion can also stimulate the up-regulation of the expression of SARS-CoV-2 receptor
ACE-2 (Angiotensin Converting Enzyme 2) and protease TMPRSS2 (Transmembrane Serine Protease 2), thereby
increasing the incidence and mortality of COVID-19. From the aerosol quality data around the World, it can be
seen that often atmospheric pollution has significantly decreased due to factors such as the reduction of traffic,
industry, cooking and coal-burning emissions during the COVID-19 lockdown. The airborne transmission poten-
tial of SARS-CoV-2, the infectivity of the virus in ambient aerosols, and the reduction of aerosol pollution levels
due to the lockdowns are crucial research subjects.

© 2021 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.

1. Introduction

COVID-19 (Corona Virus Disease 2019) is another infectious disease
caused by coronavirus following MERS (Middle East Respiratory Syn-
drome) and SARS (Severe Acute Respiratory Syndrome). The number
and speed of COVID-19 infections significantly exceed those of MERS
and SARS (Gautam et al., 2020; Javed et al., 2020). The virus that causes
COVID-19 is named SARS-CoV-2 (Severe Acute Respiratory Syndrome
Coronavirus 2) (Gorbalenya et al.,, 2020). Since the first confirmed
COVID-19 patient was identified on December 12th, 2019, the total
number of patients diagnosed in the World has reached 91,293,732
cases by January 12, 2021, especially in the USA (23,143,197 cases)
and India (10,479,179 cases) (WHO World Health Organisation,
2021), this number is still rapidly rising. In addition to the respiratory
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disease, SARS-CoV-2 can also cause other clinical symptoms, such as
damage to the nervous system (Huang et al., 2020). COVID-19 has
high infectivity with treatments being rapidly optimized, and it is typi-
cally most dangerous for the elderly (Pagani et al., 2020) or those with
underlying health issues. Since SARS-CoV-2 was first identified a num-
ber of variants have been found in COVIDs-19 cases around the world
(Weisblum et al., 2020), including the UK and South Africa (Koyama
etal, 2020; Tang et al., 2021). Currently, the 501Y-V2 variant is consid-
ered to be a more highly transmissible strain due to the rapidity with
which it became the dominant circulating genotype in South African
over a few weeks (Tegally et al., 2020). Thus, the variants of SARS-
CoV-2 further challenged the campaign against the COVID-19 pan-
demic. Studies have shown that close contact and respiratory droplets
can't explain all infections (Tabatabaeizadeh, 2021), and the environ-
mental transmissions have become an important potential mechanism
of COVID-19 spread, such as water (Sunkari et al., 2021), aerosol
(Santarpia et al., 2020; Zhang et al., 2020), and low-temperature
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enhanced spread ‘cold chain’ (Zhang, 2020). Among these, aerosol
transmission is relatively difficult to prevent.

Aerosols are a multiphase system consisting of the atmosphere with
suspended solid and liquid particles, which can carry toxic and harmful
substances; especially the liquid components (Duan et al., 2021; Mao
etal., 2002). According to their aerodynamic diameter, the airborne par-
ticles are divided into PMyo, PM, s, PM; and nanoparticles (Chen et al.,
2020; Boongla et al., 2020). The aerosol is considered potentially harm-
ful to human health as it can contain not only hazardous elements and
chemicals (Shao et al., 2006), but also pathogens such as bacteria,
fungi, and viruses (Han et al., 2021). Airborne fine particles (PM, s)
are considered of greater health significance with their large surface
area and strong adsorption capability (Ding and Zhu, 2003).

In such a severe COVID-19 pandemic, it is essential to study the
transmission routes of this virus. According to the WHO (2020), the
main transmission routes of SARS-CoV-2 are respiratory droplets and
contact transmission, and in a relatively closed environment, long-
term exposure to a high concentration of aerosol may cause aerosol
transmission. Before the 1930s, it was thought that respiratory infec-
tious diseases could be transmitted by airborne substances, but there
was no size division of these substances (Brown and Allison, 1937;
Kramer et al., 1939). With the development of aerosol detection tech-
nology, more in-depth studies have been undertaken, and droplet trans-
mission has been subdivided into large droplets and small droplets, and
the small droplets are classified as being an ‘aerosol’ (Bourouiba, 2020).
This characterization is now widely used, but the critical diameter dis-
criminating between droplets and ‘aerosol’ is variable, ranging from
5 um to 10 pm (Bourouiba, 2020). The WHO considers 5 um as the
boundary, with the respiratory droplet having a diameter > 5 um, and
respiratory aerosol having a diameter < 5 um (Tellier et al., 2019). Stud-
ies have shown that the large droplets are more easily dropped out of at-
mospheric suspension, whereas multiphase turbulent buoyant clouds,
i.e., the small droplets or aerosol particles contained in a locally humid
and warm atmosphere will stay airborne for a longer time (Bourouiba
et al,, 2014). These aerosol particles will take much longer to be re-
moved from the atmosphere (Scharfman et al., 2016), and therefore
have a greater potential to spread the virus. In addition to direct virus
aerosol transmission, some virus-containing substances in the environ-
ment can generate aerosols for further transmission. For example, SARS-
CoV-2 has been detected in feces and urine (Du et al., 2020; Perchetti
et al.,, 2020), potentially allowing aerosol transmission caused by poor
hygiene and practices with human excrement.

The meteorological factors such as temperature and humidity have
impacts on transmission of COVID-19. It is generally accepted that a
higher temperature would inactivate SARS-CoV-2 (Guo et al., 2021;
Notari, 2021) and a higher humidity is associated with spreading
SARS-CoV-2 (Ratnesar-Shumate et al., 2020; Crema, 2021; Fernandez-
Raga et al., 2021) although there are very few cases which showed the
opposite result (Ma et al., 2020). The uncertainty exists about the influ-
ence of temperature and humidity on the propagation of COVID-19,
which requires more systematic investigation.

In response to the COVID-19 emergency, many countries over all the
World, in an attempt to curb the spread of the infection, have intro-
duced a range of social-distancing measures including shutdowns and
traffic restrictions. Emission control measures initiated and enforced
due to major events can have a significant effect on reducing aerosol
pollution. For example, after the 2008 Olympic Games, and the Asia-Pa-
cific Economic Cooperation (APEC) meeting, particulate pollutant levels
have been reduced (Guo et al., 2016; Qiao et al., 2017). Air quality has
also been significantly improved in Beijing in response to intensified
control strategies over 2013-2019 (Chang et al.,, 2019; Li et al., 2020d;
Shao et al,, 2019). It is expected that the unprecedented pandemic lock-
downs could have a considerable impact on ambient aerosol pollution .

Although some phenomena demonstrate that there are mutual rela-
tionships between SARS-CoV-2 and aerosols (Tung et al., 2021), the na-
ture of these complicated relationships remains unclear. In order to
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provide a framework for future prevention strategies, it is necessary to
study the relationship between SARS-CoV-2 and aerosols. In this review,
we have considered the multiple pathways and mechanisms of aerosols
on the transmission of SARS-CoV-2, as well as the possible changes to
aerosol pollution as a consequence of the COVID-19 lockdowns. Along
with the airborne transmission potential of SARS-CoV-2, the infectivity
of the virus in ambient aerosols requires further research.

The relationship between aerosol and COVID-19 can be divided into
two aspects (Fig. 1). One association is that SARS-CoV-2 spreads
through aerosol. The other is that aerosol pollution decreased during
COVID-19 lockdown. The aerosol exhaled by the COVID-19 patients
can directly transmit the virus. Ambient aerosols affect the transmission
of SARS-CoV-2 in two modes. One mode is that ambient aerosols act as
virus vectors indirectly; the other mode is that ambient aerosols can
stimulate the expression of SARS-CoV-2 receptor and protease, and in-
crease the binding site of SARS-CoV-2, thus increasing the morbidity
and mortality of COVID-19. As a result of the prevention and control
measures during the lockdown, coupled with the self-constraint of peo-
ple, human activities have been greatly reduced, which leads to a great
decrease of the mass concentration of ambient aerosols.

2. Influence of human-exhaled aerosol on the transmission of
COVID-19

2.1. Airborne transmission characteristics of the human-exhaled aerosol

The aerosol produced by sneezing and coughing can travel for 7-8 m
(Bourouiba, 2020). In a simulation test of a Laryngo-Tracheal Mucosal
Atomization Device, which enables clinicians to deliver a fine mist of at-
omized medication across the mucosa membrane, the upper airways
and beyond the vocal cords, the aerosol produced appeared on doctors'
necks, face, hands, arms, goggles, masks, and protective clothing, and
also around the operating room (Endersby et al., 2020). Studies have
shown that when people sneeze or cough, the droplets larger than
10 um will sediment nearby, pollute that environment, and risk direct
and indirect transmission of the virus, whereas the droplets smaller
than 10 um when leaving the airway will become droplet nuclei or aero-
sols (Bourouiba, 2020). These aerosols can stay airborne in the atmo-
sphere much longer (Bourouiba, 2020), and aerosol particles with an
aerodynamic diameter less than 2.5 um can enter the alveoli directly
(Feng et al., 2020). When compared with the nasal cavity and trachea,
when the virus accumulates in alveoli, small doses can cause infection
(Lindsley et al., 2010). In contrast to sneezing or coughing that can pro-
duce a large amount of aerosol, breathing and speaking can produce
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Fig. 1. The relationship between aerosol and SARS-CoV-2.
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finer particles (<1.5 um) (Asadi et al., 2019), and these smaller aerosol
particles can travel further in the air (Lindsley et al., 2014).

2.2. Evidence of human-exhaled aerosol containing SARS-CoV-2

The particle sizes of exhaled aerosol produced by COVID-19 patients
during speaking and coughing ranged from <0.25 pm (submicron) to
about 10 um, which has been shown to contain SARS-CoV-2 RNA and
has the ability to transmit the virus in the air (Santarpia et al., 2020).
Both symptomatic and asymptomatic patients have high SARS-CoV-2
viral load in their nasopharynx and trachea (Baggio et al., 2020; Zou
et al,, 2020), which provides the required conditions for exhaled aerosols
to carry the virus. There are conflicting evidences for airborne transmission
of SARS-CoV-2 (Falahi and Kenarkoohi, 2020). A study has detected SARS-
CoV-2 virus RNA on the surface of an air vent, room air and corridor air in a
COVID-19 ward (no patient cough was observed during sampling), and it is
found that 63.2% of the samples were positive for SARS-CoV-2, and the con-
centration level reached 2420 RNA copies / m> (Santarpia et al,, 2020). The
presence of SARS-CoV-2 in aerosols was also monitored in the hospital en-
vironment, which accounted for 179-2738 RNA copies/m> (Ong et al.,
2021). The viruses have also been detected in the samples collected on
the surface and in the air of buses and subway trains (Moreno et al.,
2020), and on the surface of an ICU ward (Orenes-Pinero et al., 2021).

Some medical procedures are more likely to produce human-
exhaled aerosols. In March 2020, Public Health England defined AGP
(Aerosol Generation Procedure) in the medical processes, such as intu-
bation, dental surgery, high flow nasal oxygen and other related proce-
dures (Simonds, 2020). Transnasal drill and cautery use is associated
with the production of the aerosol in the range of 1 to 10 um under
endonasal procedures (Workman et al., 2020). The SARS-CoV-2 has
been detected in the submicron and ultra-micron aerosol of two hospi-
tals in Wuhan (Liu et al., 2020c).

SARS-CoV-2 RNA appeared inside the air conditioner and the air
samplers, or on object surfaces more than 2 m away from patients,
within only 20 min after the patients registered into the ward
(Santarpia et al., 2020), which shows that the airflow can take the
virus aerosol particles from the patient bed to the edge of the room by
ventilation. A full-scale test by (Ai et al., 2019) has revealed the trans-
mission characteristics of the exhaled aerosol in the air and they have
shown that people near the virus carriers have a relatively high expo-
sure risk, especially those facing the infectious person. All these studies
indicate that the SARS-CoV-2 infection may occur within a very short
period after exposure to the COVID-19 patients.

In summary, when compared with the large droplets, the human-
exhaled aerosol has a stronger diffusion ability, and similarly, the aero-
sols carrying SARS-CoV-2 produced by COVID-19 patients have a higher
transmissibility. In addition to the contact transmission and closed air-
borne transmission, SARS-CoV-2 may also be transmitted by aerosols
in ventilation systems. The possibility of long-distance aerosol transmis-
sion needs further and urgent epidemiological and experimental stud-
ies. Aerosols carrying SARS-CoV-2 are likely to be produced in the
common treatments of cardiopulmonary, oral and airway diseases. Hos-
pitals are densely populated environments, where strict protective
measures must be implemented to ensure the safety of medical staff
and other personnel.

2.3. Similarity of air transmission of SARS-CoV-2 and other viruses

Phylogenetic analysis revealed that SARS-CoV-2 and SARS-CoV (Se-
vere Acute Respiratory Syndrome Coronavirus) are both in the subge-
nus Sarbecovirus of the genus Betacoronavirusare (Lu et al., 2020), and
therefore SARS-CoV-2 is similar to the SARS-CoV in terms of gene se-
quence homology (Gorbalenya et al., 2020). On February 11th, 2020,
ICTV (International Committee on Taxonomy of Viruses) stated that
CSG (Coronaviridae Study Group) has recognized SARS-CoV-2 as a sister
clade to SARS-CoV (Gorbalenya et al., 2020). In terms of structure and
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function, both of them are the coronavirus associated with severe
acute respiratory syndrome, and they are homologous RNA viruses
that can cause human pneumonia.

Table 1 provides some comparisons between SARS-CoV-2 and SARS-
CoV,whichillustrates our understanding of the transmission mechanism,
prevention, and treatment of COVID-19. As shown in Table 1, SARS-CoV-2
and SARS-CoV belong to the same genera Betacoronavirus. Both have
similar diameters, with the size of 65-125 nm (Shereen et al., 2020).
The host cell receptors of both SARS-CoV-2 and SARS-CoV are the ACE-2
protein, but the affinity between SARS-CoV-2 and receptor protein
is higher which would facilitate a relatively fast transmission of cor-
responding diseases (Giron et al., 2020). van Doremalen et al. (2020)
have established an experimental environment to test the stability of
SARS-CoV-2 and SARS-CoV, and they have found that the survival time
(aerosol half-life) of the two viruses in the air after artificial aerosolizing
was similar, but the retention time of SARS-CoV-2 on the surfaces of ob-
jects was relatively longer, which increased the risk of resuspension.
SARS-CoV has the known ability for airborne transmission and this virus
was found in an air sampler 5 ft (1.52 m) away from the patient (Booth
et al., 2005). SARS-CoV can also be transmitted between buildings
(Yuetal, 2004) and aircraft passengers (Olsen et al., 2003). A study on a
hospital in Beijing suggested that nosocomial, hospital-derived, infection
could be the main cause of the early prevalence of SARS in the hospital
(Heetal., 2003).

Other coronaviruses and common viruses can also have the ability of
aerosol transmission. Studies on the human coronavirus 229E (a com-
mon cold virus) have shown that the experimental virus-carrying aero-
sol can persist at 20 °C and 50% relative humidity for 6 days (ljaz et al.,
1985). Influenza patients emit aerosol particles containing the influenza
virus when they are coughing, and most of the virus RNA is incorporated
into the particles within the respiratory size range (Lindsley et al.,
2010). In seasonal influenza transmission, a large number of virus cop-
ies were detected in fine aerosol particles (Milton et al,, 2013).

In summary, there are similarities between SARS-CoV-2 and SARS-
CoV in gene sequence and stability. The SARS-CoV-2 virus, other
coronaviruses and common viruses also have aerosol transmission
capacity. SARS-CoV-2 can be directly transmitted through human-
exhaled aerosol. In future prevention and control research, the charac-
teristics of SARS-CoV and other viruses, especially their airborne trans-
mission potential needs to be further elucidated.

3. Influence of ambient aerosols on the transmission of COVID-19
3.1. Epidemiological relationship between ambient aerosol and COVID-19

Long-term exposure to poor air quality can cause a range of diseases
(Guo et al., 2016). Epidemiological and in-vitro experimental evidence
shows that aerosol pollution exposure has a positive correlation with
respiratory diseases, such as COPD (Chronic Obstructive Pulmonary Dis-
ease), asthma (Kesic et al.,, 2012), ILI (Influenza Like IlI) (Su et al., 2019),
AL (Acute Lung Injury) (Li et al., 2019) and SARS (Yao et al., 2020).

Since the outbreak of COVID-19, scholars in many parts of the World,
including Europe, North America and Asia, have undertaken studies on
the epidemiological relationship between air pollution indicators and
COVID-19. Konstantinoudis et al. (2020) used high-resolution hierarchi-
cal spatial analysis to investigate 38,573 cases of COVID-19 deaths in
32,844 small areas in England as of June 30th, 2020 and used the Bayes-
ian hierarchical model to quantify the impact of air pollution. The results
showed that the mortality of COVID-19 would increase by 1% for every
1 pg/m? increase of NO, and PM, 5. The COVID-19 cases in Germany
from February 24th to July 2nd, 2020 have been examined by correla-
tion analysis and WTC (Wavelet Transform Coherence), and it has
been found that the concentrations of PM, s, O3, and NO, were signifi-
cantly associated with the prevalence of COVID-19 (Bilal Bashir et al.,
2020). The data from 55 Italian regional samples, as of April 7th, 2020
showed that the rapid spread of COVID-19 in northern Italy was highly



Y. Cao, L. Shao, T. Jones et al.

Gondwana Research 93 (2021) 243-251

Table 1
Comparison of SARS-CoV-2 and SARS-CoV.
Properties SARS-CoV-2 SARS-CoV References
Genus Betacoronavirus Betacoronavirus Lu et al., 2020
Species Severe acute respiratory Severe acute respiratory Lu et al., 2020
syndrome-related coronavirus syndrome-related coronavirus
Size 65-125 nm 65-125 nm Shereen et al., 2020
The receptor of the host cell ACE-2(Higher affinity) ACE-2 Giron et al., 2020
Infection rate Relatively fast Relatively slow Wang et al., 2020a
Half-life period on aerosol 0.64-2.64 h 0.78-2.43 h van Doremalen et al., 2020
correlated with local air pollution (Coccia, 2020). In northern Italy, the Table 2

geographical factors of the local mountains and the high densities of fac-
tories and transportation were the main causes of PM, s, PM;o, NO, and
03 pollution, which mirrored the higher occurrence frequency and se-
verity of COVID-19 (Daniele and Francesco, 2020). Milan, located in
the Po Valley Basin, is a recognized hot spot of aerosol pollution.
Through comprehensive time series analysis, Zoran et al. (2020) found
that the PM, 5 and PM; in the metropolitan area of Milan from January
1st to April 30th, 2020 were significantly positively related with the
prevalence of COVID-19. The association between air quality indicators
and COVID-19 cases in California was analyzed using the Spearman and
Kendall correlation test, and the results indicated that ambient pollut-
ants including the mass concentrations of PM;o, PM; 5, SO, and NO,
were negatively correlated with the prevalence of COVID-19 and only
the CO concertation showed a positive correlation with the COVID-19
(Bashir et al., 2020). In another study in California, the time-series anal-
ysis revealed that, in addition to the CO and Os, the concentration of
PM, 5 was also positively correlated with increases in the incidence
and mortality of COVID-19 (Meo et al., 2021). A national cross-
sectional study was conducted on more than 3000 counties (98% of
the population) in the United States, and the results showed that the in-
crease of PM, 5 by only 1 ug/m> was associated with an 8% increase in
the mortality rate of COVID-19 (Wu et al., 2020).

Air pollution and meteorological data have been collected from Jan-
uary 25th to April 7th, 2020 in Wuhan, China, and Pearson and Poisson
regression models have been used to study the relationship between
COVID-19 mortality and each risk factor; this research concluded that
PM, s was the only pollutant with positive correlation with COVID-19
mortality (Jiang and Xu, 2020).

A longitudinal cohort study of 6529 patients from 28 urban areas of
Japan has been conducted, and the results showed that short-term ex-
posure to the suspended particulates may affect respiratory tract infec-
tion caused by SARS-CoV-2 (Azuma et al., 2020). The outpatient data of
21 Japanese cities demonstrated a delayed association between PM, 5
and cardiopulmonary examination (Seposo et al., 2020).

The positive association between aerosol and confirmed cases or
deaths of COVID-19 in Zhu et al. (2020) has been questioned for lack
of the study of population density (Copiello and Grillenzoni, 2020).
Therefore, when we analyze the relationships between the concentra-
tions of airborne particles and the confirmed cases or deaths of
COVID-19, we shouldn't ignore the impacts from population density.
The data of Bashir et al. (2020) showed the concentration of PM2.5,
had a negative correlation with prevalence of COVID-19, while the
study by Meo et al. (2021) revealed a positive correlation between
these two parameters. Therefore, the use of Spearman and Kendall cor-
relation tests may not give a solid evidence, some of the associations re-
sulted from the correlation analysis may still need to have proof from
other parameters.

The results described above have been summarized in Table 2, and
most of these studies have supported the hypothesis that poor air qual-
ity increases the prevalence and mortality of COVID-19. In particular, a
positive relationship has been observed between PM, 5 and COVID-19
morbidity or mortality. The consistently positive significant correlation
provides further evidence that long-term exposure to relatively high
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Studies showing associations of air quality indicators with the COVID-19 in different re-
gions of the world.

Region PM; 5 PM;o NO, SO, CO O3 References
England +(uncertain) + + +  + Konstantinoudis et al.,
2020
Germany + + + Bilal Bashir et al., 2020
Italy + + + + Daniele and Francesco,
2020
Milan, Italy — + + Zoran et al., 2020
California, + 4+ + Meoet al, 2021
USA
California, - - - - + Bashir et al., 2020
USA
USA + Wau et al,, 2020
Wuhan, + - - - Jiang and Xu, 2020
China
Japan + Azuma et al,, 2020
Japan + Seposo et al., 2020

Note: ‘+’ stands for promoting effect or positive correlation, ‘-’ stands for negative corre-
lation, and blank space represents no research.

concentrations of ambient aerosols is responsible for the increased
transmission and pathogenicity of SARS-CoV-2 in the relevant popula-
tion. Table 2 also showed the positive correlation between most gaseous
pollutants and COVID-19. NO,, SO,, O3 and CO may play important roles
in two possible ways; one is that exposure to high levels of gaseous pol-
lutants can cause inflammation of the airways to affect lung function
and respiratory symptoms (Huang and Brown, 2021), and the other is
that the secondary reaction between aerosols and gaseous pollutants
will be strengthened at lower temperature and higher relative humidity
condition (Ding et al.,, 2021), which can enhance the harm of aerosols.

It is important to study the relationship between air pollution and
human health in order to help policy-makers to formulate positive
strategies to reduce the pollution of ambient aerosols, especially PM, s,
which would help to alleviate the rapid spread of COVID-19 and, poten-
tially, to decrease the spread of epidemic viruses and diseases in the
future.

3.2. Mechanism of ambient aerosol affecting COVID-19 diffusion

3.2.1. Ambient aerosols play a role as the carrier of SARS-CoV-2
SARS-CoV-2 may enter the human body through aerosol; not only
long-term but also short-term exposure will have a great adverse im-
pact on the human immune system (Zoran et al., 2020). Although the
atmospheric processes experienced by the aerosol particles after release
from the human body could, to some extent, cause severe damage to
biomass (Zhen et al., 2013), SARS-CoV-2 can survive in aerosols for
3 h, and can survive on the surfaces of other contact materials for
even longer times, i.e. copper (3.4 h) < cardboard (8.45 h) < stainless
steel (13.1 h) < plastic (15.9 h) (van Doremalen et al., 2020). Under cer-
tain conditions, viruses on the surface of objects and in water can resus-
pend into the air and combine with existing aerosols (Ravi et al., 2020).



Y. Cao, L. Shao, T. Jones et al.

Ambient aerosols play a carrier or enhancement role for SARS-CoV-2
(Martelletti and Martelletti, 2020). The morbidity and mortality of
COVID-19 are related to air pollution emission sources. In addition to
humans as the source of ambient aerosol transmission, TSDF (hazardous
waste treatment, storage and disposal facilities) and RMP (Risk Man-
agement Plan) sites are potential air pollution sources (Hendryx and
Luo, 2020; Tung et al., 2021). Under certain conditions, ambient aero-
sols, such as water-borne aerosols, can provide favorable surfaces for
the adsorption of organic molecules and viruses, and facilitate higher
transmission rate under certain ambient conditions (Manoj et al.,
2020). Polluted water can be a source of viruses, and aerosols from
this source can carry a variety of viruses, leading to a higher exposure
rate for residents living around the contaminated area (Rocha-
Melogno et al., 2020). In Australia, SARS-CoV-2 was detected in a waste-
water treatment plant (Ahmed et al., 2020).

Fecal-oral transmission could be an additional route for SARS-CoV-2
spread. After the virus enters the body, the virus-specific RNA and pro-
tein are synthesized to assemble new viruses, which are then released
into the gastrointestinal tract, and finally expelled from the body
(Xiao et al., 2020b), so the feces of COVID-19 patients have a high viral
load (Xiao et al., 2020a). Aerosols in sanitary pipeline systems can
carry viruses, resulting in a higher-risk of infection (Gormley et al.,
2017). It is postulated that there is a risk of SARS-CoV-2 infection
through aerosol when using contaminated toilets (Wang et al.,
2020Db). Since fecal aerosol transmission may have caused the commu-
nity outbreak of COVID-19 in high-rise buildings (Kang et al., 2020), un-
derstanding the transmission routes of aerosol-related sewage and fecal
sources may be important for reducing the spread of COVID-19, espe-
cially in developing countries.

The described evidence above shows that SARS-CoV-2 can combine
with ambient aerosols and enter the human body, but there is little ex-
perimental evidence about the combination of the SARS-CoV-2 and
aerosols. Whether virus aerosol detected around patients are human-
exhaled aerosol or ambient aerosol is worth further experimental
verification.

3.2.2. Ambient aerosols can up regulate SARS-CoV-2 receptor and related
protease

Aerosol pollution exposure is associated with various respiratory
and cardiovascular diseases (Pun et al., 2017), and one of the mecha-
nisms is the up-regulation of ACE-2 (Angiotensin Converting Enzyme
2) and TMPRSS2 (Transmembrane Serine Protease 2) (Lin et al.,
2018). ACE-2 is the main receptor protein of SARS-CoV-2, and the syn-
aptic glycoprotein of the virus has a high affinity for ACE-2 in host cell
targets (Vankadari and Wilce, 2020). TMPRSS2 is a protease that can
cleave viral spike protein and make it combine with target cells to pro-
mote infection (Kaur et al., 2021). The up-regulation of ACE-2 is a pro-
tective mechanism when the respiratory system is exposed to aerosol,
which can maintain the dynamic balance of RAS (Renin Angiotensin
System) and reduce inflammatory reaction (Ye and Liu, 2020). ACE-2
is abundantly expressed not only in the lung, but also in the glandular
cells of gastric, duodenal, and rectal epithelia of the patients with
COVID-19 (Xiao et al., 2020b).

When PM, 5 invades the human body, ACE-2, as the receptor for
SARS-CoV-2 to enter cells, will protect against renin-angiotensin
system-induced lung injuries by cleaving Angiotensin II to limit sub-
strate availability in the adverse AEC-Ang II-Ang II receptor 1 axis
(Parajuli et al., 2014). Therefore, PM; 5 can increase the SARS-CoV-2 sus-
ceptibility for human body by enhancing the expression of AEC-2 and its
cofactor TMPRSS2 (Kim et al., 2020). An in vivo experimental study has
confirmed that the expression level of ACE-2 in the lung of experimental
mice was significantly increased after being induced by PM, 5 (Lin et al.,
2018). Statistical analysis suggests that PM, s may be the cause of the
overexpression of ACE-2 in human epithelial cell surfaces of the respira-
tory tract (Paital and Agrawal, 2020). For smokers, a large number of
aerosols with a particle size of less than 1 pm will be generated by the
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process of smoking. After smoking, these aerosols can be suspended in
the indoor atmosphere for a long time (Cao et al., 2018), and this
would impact the secondhand (passive) smokers who would also
show an increase in the expression of ACE-2 in their bronchi (Aliee
et al., 2020). Compared with non-smokers, the expression of ACE-2
and TMPRSS2 in smokers and patients with COPD were significantly
up-regulated (Sharif-Askari et al., 2020).

Overall, there was a significant correlation between aerosol concen-
tration level, ACE-2 expression, and severity of COVID-19 infection
(Paital and Agrawal, 2020). Therefore, the decision-makers should pay
particular attention to the air pollution in areas where COVID-19 is
prevalent, and appropriate measures should be implemented in order
to reduce this air pollution. Smoking promotes the expression of
ACE-2 and TMPRSS2 in the airway. Therefore, during the pandemic,
the control of smoking in public places needs more strict legislation,
and non-smoking individuals should be advised to avoid proximity to
smokers. It may be worthwhile to explore the therapeutic effects of re-
combinant ACE-2 protein in the early stage of COVID-19 infection (Li
et al., 2020b).

4. Changes in aerosol pollution during COVID-19

Since Wuhan announced the implementation of COVID-19 lock-
down on January 23rd, 2020, China and other regions in the world
have taken measures to restrict travel and shut down industry and com-
merce to avoid crowd gathering and reduce the spread of COVID-19.
The prevention and control measures taken by these countries have
greatly reduced the transmission rates of COVID-19 (Kerimray et al.,
2020). With the large-scale shutdowns and traffic restrictions, the aero-
sol pollution had a general corresponding decrease in levels (Zhou et al.,
2012; Liu et al,, 20204, 2021; Shi et al., 2021; Zhou et al., 2012; Shi et al.,
2021). The results of aerosol concentration changes in different regions
during the COVID-19 lockdown are summarized in Fig. 2, which demon-
strates the impact of prevention and control measures on aerosol
pollution.

As shown in Fig. 2, compared with the preceding period of COVID-19
lockdown, the average concentration of PM2.5 has decreased by 31% in
California (Liu et al., 2020b), 21.8% in Hat Yai, Thailand (Stratoulias and
Nuthammachot, 2020), 52% in Pearl River Delta (Wang et al., 2021) and
41.2% in Wuhan (Sulaymon et al., 2021) during COVID-19 lockdown,
and the average concentration of PM;q has decreased by 31% in Barce-
lona, Spain (Tobias et al., 2020), 22.9% in Hat Yai, Thailand (Stratoulias
and Nuthammachot, 2020) and 33.1% in Wuhan (Sulaymon et al.,
2021). Compared with the preceding years, PM; 5 and PM;, mass con-
centrations of 22 cities in India decreased by about 43% and 31% during
the lockdown (Sharma et al., 2020). The PM, 5 concentration in Almaty,
Kazakhstan, during the lockdown, is 21% lower than the average level in
the same period of 2018-2019 (Kerimray et al., 2020). Compared with
the same period in the previous four years, the pollutants PM;q and
PM, 5 in Singapore decreased by 23% and 29%, respectively (Li and
Tartarini, 2020). A survey was conducted in 19 countries in the South
and Southeast Asian region, compared to the same period of 2019, the
PM, 5 level decreased by an average of 20.25% (Roy et al., 2021). Com-
pared with the same period last year, the PM, 5 concentration in the re-
gional Level I and Level Il response periods in the Yangtze River Delta
region decreased by 31.8% and 33.2% respectively (Li et al., 2020c).

The large reduction of human activities has significantly improved
air quality in many areas during the control of COVID-19. Compared
with the pre-lockdown period, the concentrations of PM;q (14-20%)
and PM, 5 (7-16%) in 597 major cities in the world have decreased sig-
nificantly (Liu et al,, 2021). For the areas with more serious air pollution
problems, the improvement of the aerosol is greater, and the decrease of
PM, 5 is greater than that of PMq (Fig. 2). Therefore, the decrease of air
pollutants in areas with high pre-lockdown levels is more obvious, and
PM, 5 is more sensitive to emission reduction (Wang et al., 2021).
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Fig. 2. The decline in concentrations of PM, s and PM; in various regions during COVID-19 lockdown.

Some studies have investigated the reasons for the decrease of atmo-
spheric aerosol concentrations. Measures such as city closure and vehi-
cle restrictions greatly reduced the types of primary aerosols related to
traffic and reduced the levels of air pollution (Liu et al., 2021; Chen et al.,
2021), and at the same time, many factories shut down and stop pro-
duction, and the emission of the secondary industry decreased (Wang
et al., 2020c). In Beijing, the vast majority of restaurants were closed,
and the aerosol emissions of cooking and gas burning decreased by
30-50% on average (Sun et al., 2020). The reduction of secondary aero-
sol species was very small (5-12%) (Sun et al., 2020). These results indi-
cate that the control of anthropogenic emissions will greatly improve air
quality, but they may not be able to effectively suppress secondary aero-
sols under stagnant weather conditions.

The studies discussed above are mostly focused on local small-scale
cases. Future research should consider expanding time and space do-
mains, combining satellite data and monitoring station data to better
characterize the change of aerosol pollution. Also, meteorological fac-
tors need to be considered when studying the impact of ambient aero-
sols (Guo et al., 2021). The improvement of air quality caused by the
epidemic prevention measures provide reference for policy-makers to
formulate measures to reduce aerosol pollution.

5. Concluding remarks

(1) The relationship between aerosols and COVID-19 can be
subdivided into three types; human-exhaled aerosols directly
transmitting COVID-19; COVID-19 transmitted by ambient aero-
sols; ambient aerosol concentrations decrease as a result of the
COVID-19 lockdowns.

The human-exhaled aerosol produced by breathing, speaking
and sneezing can survive for a significant time (3 h), and the air-
borne transportation distance can reach 7-8 m. The airborne
transmission potential of SARS-CoV-2 must be considered in pre-
vention and control work, and the transmission of virus aerosol
should be effectively decreased by ventilation, disinfection and
wearing protective devices.

Overexposure to ambient aerosols can cause respiratory diseases,
and ambient aerosols are associated with increased morbidity
and mortality by COVID-19. Two mechanisms have been
discussed in this process. Firstly, SARS-CoV-2 may combine
with ambient aerosols from contaminated sites (such as medical
waste treatment sites, polluted water bodies and toilet pipes) to
enter the human body. Secondly, the ambient aerosol can stimu-
late the expression of ACE-2 and TMPRSS2, leading to the
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increase of SARS-CoV-2 binding sites and the acceleration of in-
fection efficiency. The binding mechanism, survival time and re-
sidual activity of SARS-CoV-2 in ambient aerosols need to be
further studied. The infectivity of the virus in ambient aerosols
should be further researched.

Due to the epidemic minimizing measures during COVID-19 in
numerous locations worldwide, traffic emissions and factory
emissions were reduced. This has been an opportunity to observe
therelationship between human factors and air quality. Compared
with the same period in previous years before the epidemic, aero-
sol pollution, especially PM, s, decreased significantly. The reduc-
tion of aerosols in areas with high air pollution is more obvious,
and the levels of PM, 5 are more sensitive to emission reduction
than PMjo.
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