46 research outputs found

    Path tortuosity changes the transport cost paradigm in terrestrial animals

    Get PDF
    The time that animals spend travelling at various speeds and the tortuosity of their movement paths are two of the many things that affect space-use by animals. In this, high turn rates are predicted to be energetically costly, especially at high travel speeds, which implies that animals should modulate their speed according to path characteristics. When animals move so as to maximize distance and minimize metabolic energy expenditure, they travel most efficiently at the speed that gives them a minimum cost of transport (COTmin), a well-defined point for animals that move entirely in fluid media. Theoretical considerations show though, that land animals should travel at their maximum speed to minimize COT, which they do not, instead travelling at walking pace. So, to what extent does COTmin depend on speed and turn rate and how might this relate to movement paths? We measured oxygen consumption in humans walking along paths with varied tortuosity at defined speeds to demonstrate that the energetic costs of negotiating these paths increase disproportionately with both speed and angular velocity. This resulted in the COTmin occurring at very low speeds, and these COTmin speeds reduced with increased path tortuosity and angular velocity. Logged movement data from six free-ranging terrestrial species underpinned this because all individuals turned with greater angular velocity the slower their travel speeds across their full speed range. It seems, therefore, that land animals may strive to achieve minimum movement costs by reducing speed with increasing path variability, providing one of many possible explanations as to why speed is much lower than currently predicted based on lab measurements of mammalian locomotor performance

    Pancreas-derived mesenchymal stromal cells share immune response-modulating and angiogenic potential with bone marrow mesenchymal stromal cells and can be grown to therapeutic scale under GMP conditions

    Get PDF
    Background aims: Mesenchymal stromal cells (MSCs) isolated from various tissues are under investigation as cellular therapeutics in a wide range of diseases. It is appreciated that the basic biological functions of MSCs vary depending on tissue source. However, in-depth comparative analyses between MSCs isolated from different tissue sources under Good Manufacturing Practice (GMP) conditions are lacking. Human clinical-grade low-purity islet (LPI) fractions are generated as a byproduct of islet isolation for transplantation. MSC isolates were derived from LPI fractions with the aim of performing a systematic, standardized comparative analysis of these cells with clinically relevant bone marrow-derived MSCs (BM MSCs). Methods: MSC isolates were derived from LPI fractions and expanded in platelet lysate-supplemented medium or in commercially available xenogeneic-free medium. Doubling rate, phenotype, differentiation potential, gene expression, protein production and immunomodulatory capacity of LPIs were compared with those of BM MSCs. Results: MSCs can be readily derived in vitro from non-transplanted fractions resulting from islet cell processing (i.e., LPI MSCs). LPI MSCs grow stably in serum-free or platelet lysate-supplemented media and demonstrate in vitro self-renewal, as measured by colony-forming unit assay. LPI MSCs express patterns of chemokines and pro-regenerative factors similar to those of BM MSCs and, importantly, are equally able to attract immune cells in vitro and in vivo and suppress T-cell proliferation in vitro. Additionally, LPI MSCs can be expanded to therapeutically relevant doses at low passage under GMP conditions. Conclusions: LPI MSCs represent an alternative source of GMP MSCs with functions comparable to BM MSCs

    Technological Advances to Address Current Issues in Entomology: 2020 Student Debates

    Get PDF
    The 2020 Student Debates of the Entomological Society of America (ESA) were live-streamed during the Virtual Annual Meeting to debate current, prominent entomological issues of interest to members. The Student Debates Subcommittee of the National ESA Student Affairs Committee coordinated the student efforts throughout the year and hosted the live event. This year, four unbiased introductory speakers provided background for each debate topic while four multi-university teams were each assigned a debate topic under the theme ‘Technological Advances to Address Current Issues in Entomology’. The two debate topics selected were as follows: 1) What is the best taxonomic approach to identify and classify insects? and 2) What is the best current technology to address the locust swarms worldwide? Unbiased introduction speakers and debate teams began preparing approximately six months before the live event. During the live event, teams shared their critical thinking and practiced communication skills by defending their positions on either taxonomical identification and classification of insects or managing the damaging outbreaks of locusts in crops

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Late-Stage Metastatic Melanoma Emerges through a Diversity of Evolutionary Pathways

    Get PDF
    Understanding the evolutionary pathways to metastasis and resistance to immune-checkpoint inhibitors (ICI) in melanoma is critical for improving outcomes. Here, we present the most comprehensive intrapatient metastatic melanoma dataset assembled to date as part of the Posthumous Evaluation of Advanced Cancer Environment (PEACE) research autopsy program, including 222 exome sequencing, 493 panel-sequenced, 161 RNA sequencing, and 22 single-cell whole-genome sequencing samples from 14 ICI-treated patients. We observed frequent whole-genome doubling and widespread loss of heterozygosity, often involving antigen-presentation machinery. We found KIT extrachromosomal DNA may have contributed to the lack of response to KIT inhibitors of a KIT-driven melanoma. At the lesion-level, MYC amplifications were enriched in ICI nonresponders. Single-cell sequencing revealed polyclonal seeding of metastases originating from clones with different ploidy in one patient. Finally, we observed that brain metastases that diverged early in molecular evolution emerge late in disease. Overall, our study illustrates the diverse evolutionary landscape of advanced melanoma.SIGNIFICANCE: Despite treatment advances, melanoma remains a deadly disease at stage IV. Through research autopsy and dense sampling of metastases combined with extensive multiomic profiling, our study elucidates the many mechanisms that melanomas use to evade treatment and the immune system, whether through mutations, widespread copy-number alterations, or extrachromosomal DNA.See related commentary by Shain, p. 1294. This article is highlighted in the In This Issue feature, p. 1275.</p

    Functional immune responses against SARS-CoV-2 variants of concern after fourth COVID-19 vaccine dose or infection in patients with blood cancer

    Get PDF
    Summary Patients with blood cancer continue to have a greater risk of inadequate immune responses following three COVID-19 vaccine doses and risk of severe COVID-19 disease. In the context of the CAPTURE study (NCT03226886) we report immune responses in 80 patients with blood cancer who received a fourth dose of BNT162b2. We measured neutralising antibody titres (NAbT) using a live virus microneutralization assay against wild-type (WT), Delta, Omicron BA.1 and BA.2 and T cell responses against WT and Omicron BA.1 using an activation-induced marker (AIM) assay. The proportion of patients with detectable NAb titres and T cell responses after the fourth vaccine dose increases compared to those after the third vaccine dose. Patients who received B cell-depleting therapies within 12 months before vaccination have the greatest risk of not having detectable NAbT. In addition, we report immune responses in 57 patients with breakthrough infections after vaccination
    corecore