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Abstract: Background
Mesenchymal Stromal Cells (MSC) isolated from various tissues are under
investigation as cellular therapeutics in a wide range of diseases. It is appreciated that
the basic biological functions of MSC vary depending on MSC tissue source, however
in-depth comparative analyses between MSC isolated from different tissue sources
under good manufacturing practice (GMP) conditions is lacking.
Aims and Objectives
Human clinical grade, low purity islet (LPI) fractions are generated as a by-product of
islet isolation for transplantation. MSC isolates were derived from LPI fractions with the
aim to perform a systematic, standardised comparative analysis of these cells to
clinically relevant bone marrow-derived MSC (BM MSC).
Materials and Methods
We derived MSC isolates from LPI fractions and expanded them in platelet-lysate (PL)-
supplemented medium, or in commercially available defined xeno-free medium. We
compared doubling rate, phenotype, differentiation potential, gene expression, protein
production and immunomodulatory capacity of LPI to BM MSC.
Results and Conclusion
We show that MSC can readily be derived in vitro from the non-transplanted fractions
from islet cell processing (LPI MSC). LPI MSC grow stably in serum-free or PL-
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supplemented media and demonstrate in vitro self-renewal as measured by colony
forming unit assay (CFU-F). LPI MSC express similar patterns of chemokines and pro-
regenerative factors to BM MSC and importantly, are equally able to attract immune
cells in vitro and in vivo and suppress T cell proliferation in vitro. Additionally, we show
that LPI MSC can be expanded to therapeutically relevant doses at low passage under
GMP conditions and therefore represent an alternative source of GMP MSC with
functions comparable to BM MSC.
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Abstract: 

Background 

Mesenchymal Stromal Cells (MSC) isolated from various tissues are under investigation as 

cellular therapeutics in a wide range of diseases. It is appreciated that the basic biological 

functions of MSC vary depending on MSC tissue source, however in-depth comparative 

analyses between MSC isolated from different tissue sources under good manufacturing 

practice (GMP) conditions is lacking.  

Aims and Objectives 

Human clinical grade, low purity islet (LPI) fractions are generated as a by-product of islet 

isolation for transplantation. MSC isolates were derived from LPI fractions with the aim to 

perform a systematic, standardised comparative analysis of these cells to clinically relevant 

bone marrow-derived MSC (BM MSC).  

Materials and Methods 

We derived MSC isolates from LPI fractions and expanded them in platelet-lysate (PL)-

supplemented medium, or in commercially available defined xeno-free medium. We 

compared doubling rate, phenotype, differentiation potential, gene expression, protein 

production and immunomodulatory capacity of LPI to BM MSC.  

Results and Conclusion 

We show that MSC can readily be derived in vitro from the non-transplanted fractions from 

islet cell processing (LPI MSC). LPI MSC grow stably in serum-free or PL-supplemented 

media and demonstrate in vitro self-renewal as measured by colony forming unit assay (CFU-

F). LPI MSC express similar patterns of chemokines and pro-regenerative factors to BM 

MSC and importantly, are equally able to attract immune cells in vitro and in vivo and 

suppress T cell proliferation in vitro. Additionally, we show that LPI MSC can be expanded 
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to therapeutically relevant doses at low passage under GMP conditions and therefore 

represent an alternative source of GMP MSC with functions comparable to BM MSC.  

 

Abbreviations:  

AD – Adipose 

B cell – B Lymphocyte 

BM – Bone Marrow 

CFU - Colony Forming Unit 

DM – Dulbecco’s Modified Eagle Medium 

DMPL – DMEM plus PL 

EMT - Epithelial Mesenchymal Transition  

FABP-4 - Fatty Acid Binding Protein-4 

GMP - Good Manufacturing Practice 

GvHD – Graft versus Host Disease 

IDO - Indoleamine, 2-3 Dioxygenase 

IEQ – Islet Equivalent 

IL-1β - Interleukin-1-beta  

IFN- - Interferon-gamma 

ISCT – International Society for Cellular Therapy 

LPI – Low Purity Islet Fraction 

MSC - Mesenchymal Stromal Cell 

NK cell – Natural Killer Cell 

PBMC - Peripheral Blood Mononuclear Cell 

PDL-1 - Programmed Death Ligand 1 

PGE-2 - Prostaglandin E2  
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PL – Platelet Lysate 

RT – Room Temperature 

SM – Stem MACSTM XF Complete medium 

SMPL – SM plus PL 

SMXF- STEM MACS MSC expansion medium XF 

SNBTS - Scottish National Blood Transfusion Service 

T cell – T lymphocyte 

T-1DM – Type-1 Diabetes Mellitus 

TGF- - Transforming Growth Factor Beta 

TNF- - Tumor Necrosis Factor Alpha 

TSG-6 – Tumour Necrosis Factor -Inducible Gene 6 

VEGF - Vascular Endothelial Growth Factor 

WBC - White Blood Cells 
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Introduction 

Mesenchymal stromal cells (MSC) are multipotent cells found in variable numbers in the 

majority of tissues. Their immunoregulatory, pro-regenerative and differentiation potential, 

coupled with their relatively ease of procurement has made them attractive as cellular 

therapeutics (1). To date, there are over 1300 registered clinical trials (ClinicalTrial.gov) 

using MSC isolated from a variety of tissues in a wide range of disease and transplant 

settings. Historically, the majority of the clinical data has been generated from bone marrow 

(BM)-derived MSC, therefore much of the understanding of MSC function relates to BM-

derived cells. While living donor-BM donation is well-established, BM aspirates contain 

relatively low numbers of MSC that require extensive expansion to reach therapeutic doses 

(2) and the ease of generating therapeutically relevant doses of functional MSC reduces with 

increasing donor age (3, 4). BM MSC expanded at large scale show a degree of phenotypic 

and functional variation over time (5). These passage-dependant functional and phenotypical 

changes may underlie an observed decline in in vivo function, - for example BM MSC are 

more efficacious when used at lower passage in patients with graft versus host disease 

(GvHD) (6). As a result, BM MSC may not be ideal for every therapeutic situation and 

therefore there has been a concerted effort to look for alternative tissue sources, including 

adipose tissue and umbilical cord (7-9). MSC isolated from different sources are not identical 

in their biological function, with differences including immune-suppressive ability and 

angiogenic potential (10-13), this is extremely important when considering MSC therapeutic 

capacity (13),  

When contemplating MSC therapeutic modes of action, it is likely that MSC anti-

inflammatory function works in concert with MSC tissue-building capacity. These functions 

are elaborated in part by chemokines, vital in attracting immune cells such as monocytes 

(CCL2) and neutrophils (CXCL2) (12); immune modulating factors such as prostaglandin E2 
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(PGE-2) (14) and indolamine 2,3-dioxygenase (IDO) (15); and a variety angiogenic factors 

including vascular endothelial growth factor (VEGF) and CXCL8 (13). These properties of 

MSC are amplified by licensing with various stimulatory factors including interferon gamma 

(IFN-γ), tumour necrosis factor alpha (TNF-α) and/or interleukin 1-beta (IL-1β). Response to 

these cytokines can be variable depending on the tissue source (16-18). We recently 

conducted a comparative analysis of adipose and umbilical cord-derived MSC for differential 

expression of a suite of chemokines, immune modulating and angiogenic factors (13). Anti-

inflammatory and pro-angiogenic phenotypes correlated with positive outcomes in a 

transplant model (13). These methods are yet to be applied to MSC derived from other 

tissues. 

Pancreatic-derived MSC have been described by a number of groups (18, 19). They can be 

isolated from the waste product of pancreatic islet transplantation. Islet transplantation is used 

to treat individuals with Type-1 diabetes mellitus (T-1DM) with unstable glycaemic control 

(20,21). It is an efficacious based treatment involving enzymatic dissociation of the donor 

pancreata under GMP conditions to release islets for transplantation (21). Highly pure islets 

are transplanted into the recipients, leaving a fractionated by-product of digested exocrine 

tissue and low purity islets - small numbers of islets plus attached exocrine tissue – (LPI).  In 

this study we investigated the potential of using the LPI fraction as a starting material for 

GMP-compliant manufacture of MSC. We determined that LPI material can be used to 

manufacture MSC under GMP conditions at scale (LPI MSC). LPI MSC expanded using 

GMP-compatible reagents were systematically evaluated for their pro-regenerative and 

inflammatory modulating function in comparison to BM MSC in vitro and in vivo.  

  



8 
 

Materials and Methods 

Tissues and blood samples 

Research protocols and adherence to donation and ethical consent specific to the tissues used 

in this study were regulated by the Scottish National Blood Transfusion Service (SNBTS) 

Research Sample Governance Committee. 

Non-transplantable LPI were collected from waste fractions of the pancreatic islet transplant 

process, following processing of donated organs for clinical transplant (20, 21). These tissues 

were made available for research following informed written consent and their use was 

governed under SNBTS sample governance reference numbers 12-16 and 15-21. Human 

volunteer-donor Buffy Coat was used as a source of peripheral blood mononuclear cell 

(PBMC) for T lymphocyte (T cell) responder assays and chemotaxis assays and were 

obtained from SNBTS blood processing under sample governance reference number 14-02.  

Human Platelet Lysate  

Platelet lysate (PL) supplement was produced by repeatedly freezing and thawing date-

expired Human Platelet packs (SNBTS) to -80°C for 12 hours and thawing at room 

temperature (RT). The freeze/thaw cycles were repeated 3 times. Upon final thaw, 10 platelet 

donation packs were pooled and centrifuged at 350g, before decanting the supernatants as 

50ml aliquots and storing at -40°C. 

Culture Medium 

LPI MSC were derived, maintained and compared in the following culture media; 1. DMPL- 

DMEM (Thermo Fisher Scientific), supplemented with Heparin (Leo Labs) at a final 

concentration of 2IU/ml, 1Non-essential Amino Acids (Thermo Fisher Scientific), 5% 

human platelet lysate. 2. SM- STEM MACS MSC expansion medium XF (SMXF) (Miltenyi 
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Biotec Ltd.). 3. SMPL- SMXF supplemented with 5% human PL. Unless stated otherwise, 

studies show LPI and BM MSC maintained in SMPL.  

Tissue Processing and Culture Initiation 

Pancreatic Material 

Waste LPI fractions were received from the SNBTS islet isolation lab. LPI was washed once 

in SMPL medium, centrifuged at 300g for 5 minutes and then cultured at 0.006ml/cm2 at 

37°C in 5% CO2 in SMPL medium. (e.g. 0.45mL LPI fraction in a T75 flask, plus 9.5ml 

SMPL medium). Explant outgrowth was assessed, and adherent cells were observed 

migrating from the explanted materials. The medium was carefully exchanged at day 7 and 

thereafter changed every 3-4 days. Cultures were observed and photographed using an EVOS 

Cell Imaging System (Thermo Fisher Scientific). Once the cultures had reached 80-90% 

confluence the cells were recovered with a 10 minute incubation at 37°C with 0.13ml/cm2 1 

 TrypLE Select (Thermo Fisher Scientific). To remove cell debris the material was passed 

through a 100μm cell strainer (Falcon). The cells were counted using a haemocytometer and 

designated as “passage 0”. These cells were either cryopreserved at 1106 / 2ml cryovial in 

Cryostor (CS10, Sigma Ltd) or re-cultured at a density of 3000 cells per cm2 in Corning 

CellBIND flasks. 

Intensification of MSC Manufacturing Density 

Five donations of LPI were processed at a higher re-seeding density of 5000 cells per cm2 in 

SM +/- PL medium only at passage 1 and passage 2. 

Bone Marrow MSC 

Existing stocks of BM MSC isolates were used in this study for comparison. These cell 

populations had been previously generated up to passage 3 using standard methods (1). 
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Medium change/passage 

All media were changed twice per week. On reaching 80-90% confluence, cultures were 

collected as described above, the cell count and yield per flask determined and re-seeded at a 

density of 3000 cells per cm2 in Corning CellBIND flasks. Cells were expanded continually 

in culture until at least 3 passages of complete cycles of growth to confluence had been 

achieved after passage 0. Unless stated otherwise, LPI and BM MSC were used at P3 

throughout this study.  

Tri-lineage differentiation  

MSC were assessed for their differentiation capacity using the Human Mesenchymal Stem 

Cell Functional Identification Kit (R&D Systems). This kit contains all necessary 

differentiation supplements and the primary and secondary antibodies required for detection. 

The mature phenotype of adipocytes, chondrocytes and osteocytes were defined by the 

binding of antibodies against fatty acid binding protein-4 (FABP-4), aggrecan and osteocalcin 

respectively. Primary antibodies were detected using secondary antibodies specific to the 

primary antibody (Northern Lights 577-conjugated anti-goat – FABP-4, Northern Lights 557-

conjugated donkey anti-mouse – osteocalcin and Northern Lights 557-conjugated Donkey 

Anti-goat –aggrecan). Samples were imaged with a Zeiss epi-fluorescent microscope and 

prepared using Zeiss software.    

Flow Cytometry 

Cells were dissociated into a single cell suspension and washed twice in buffer comprising PBS 

/2mM EDTA /0.1% human serum albumin (flow buffer). For MSC phenotyping, cells were 

stained using antibodies at various concentrations (detailed in table S1) in a total volume of 

100ul for 15 minutes at 4°C. Cells were washed 1 in flow buffer and resuspended in 200μl 

of flow buffer for analysis. Voltages were set using fluorescence minus one controls. A 
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minimum of 10,000 events were collected. Flow cytometry analysis was performed using BD 

LSRFortessa (BD Biosciences) or MACS Quant and analysed with Flow Jo software (Treestar- 

Ashland, Oregon, USA).  

T cell suppression assay 

T cell suppression assays were carried out as previously described (13) using ratios of 

MSC:PBMC ranging from 1:2 to 1:16. 

Chemotaxis assay 

Whole white blood cells (WBC) were isolated from fresh buffy coat as detailed in 

supplemental material 1. MSC were seeded at 3000 cells/cm2 in DMPL and grown as a 

monolayer in 24 well plates (Corning). Once 80% confluence was reached, MSC were either 

left unlicensed, or licensed. Licensing of MSC was carried out by incubation of 80% 

confluent cultures in complete medium supplemented with 10ng/ml each, of IFN-γ, IL-1β and 

TNF-α (R&D systems). After 24 hours, all wells were washed twice with PBS to remove 

cytokine, then 600μl of fresh DMPL was added to all wells and left for a further 24 hours. 

5μm-pore inserts (Fisher Scientific) were placed into the wells on top of the MSC and 

5.5105 WBCs in 100μl of DMPL was placed into the insert. The transwell plate was 

incubated at 37oC for 3 hours before the inserts were carefully removed and discarded. 

Migrated cells were harvested by collecting the supernatant and washing wells thoroughly 

with PBS, ensuring the collection of loosely adherent cells. Cells were washed and prepared 

for flow cytometry using Antibodies detailed in table S1. CountBright beads (50μl), used as 

per manufacturer’s instructions (Life Technologies) were added for cell counting. 

Murine Air Pouch Model 
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A previously established air pouch model was used to assess in vivo leukocyte migration 

induced by transplantation of human MSC (35). (Details of husbandry, licenses and 

techniques in supplemental methods 2). 1106 unlicensed or licensed LPI or BM MSCs in 1 

ml of sterile PBS or sterile PBS alone (control animals) was injected into the air pouch 24 

hours after the last injection of air. Mice were sacrificed and cells collected as previously 

described (summarized in S2) after 24 hours. Each sample was split into two and stained for 

2 separate flow cytometry panels, one to identify mouse innate immune cells; and one to 

identify mouse adaptive immune cells; as detailed in table S1. 

Gene Expression 

LPI and BM MSC were plated at a density of 1105/cm2 in DMPL. Once MSC reached 80% 

confluence, MSC were licensed as previously described, or left as unlicensed controls. Cells 

were incubated for a further 24 hours, and then were harvested as above. Supernatants were 

frozen at -80°C for Luminex analysis of protein expression (see below). 

Expression of chemokine, cytokine, chemokine receptor and cytokine receptor genes were 

assessed using quantitative PCR and RT2 Profiler™ PCR Arrays Human Chemokines & 

receptors (Qiagen) as previously described (13).  

Protein Secretion 

The 24 hour conditioned media from identical samples used for transcript analysis were 

collected and analysed using a Luminex 100 analyser (Bio rad) and premixed magnetic multi-

analyte kits (R&D systems cat No. LXS-AHM-2) in accordance to the manufacturer’s 

instructions. All reagents and standards were included in the kit and prepared as outlined in 

the guidelines. Briefly, samples were diluted 2 fold with calibrator diluent (75μl in 75μl). 10 

μl of the pre-coated microparticle cocktail was added to each well of the 96 well microplates, 
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followed by either 50μl sample or 50μl standard, sealed and placed on an orbital shaker 

(0.12mm orbit at 800 ± 50rpm) for 2 hours at room temperature (RT). The plates were 

washed twice with 100 μl/well wash buffer and then incubated with 50 μl/well anti-biotin 

detector antibody for 1 hour at RT on the shaker (0.12mm orbit at 800 ± 50rpm). The plates 

were washed as before and 50 μl/well of streptavidin-phycoerythrin was added and incubated 

for 30 minutes at RT. Microparticles were re-suspended in 100 μl/well of wash buffer and 

immediately read on the Bio-Rad analyser. Each microparticle bead region was designated 

and doublets excluded as stated on the certificate of analysis.  

Statistics 

Graphs and statistical analysis were generated with GraphPad Prism 6. Unpaired T tests were 

used to compare LPI vs. BM material and Paired T test’s utilised when assessing statistical 

differences within one tissue source.  Significant differences are marked on individual figures 

and represented as *p<0.05, ** p<0.01, and *** p<0.001. 
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Results 

Establishment of human LPI cultures in GMP -compliant medium  

In culture, LPI material initially presented as plastic-adherent islets, identified through 

positive dithizone staining (Fig. 1.a.ii), and islands of dithizone negative exocrine tissue (Fig. 

1.a.iii). Adherent, cobble-stone shaped cells grew out from the islets and exocrine tissue as a 

monolayer, with longer spindle-shaped cells at the outer edges of the monolayer (Fig. 1.a). 

Flow cytometric analysis of freshly isolated tissue (day 0), showed that the majority of cells 

were EPCAM +ve epithelial cells, and no CD90 and CD105+ve cells were detected (Fig. 

1.b.i). As cultures matured, EPCAM and MSC marker expression was mutually exclusive and 

the prevalence of CD105, CD90 and CD73 cells went from <1% to >90%, and EPCAM 

expressing cells went from >50% to <0.3% over a period of 16 days (Fig. 1.b.i-iv). At P0, the 

majority of cells were positive for MSC markers, where 95% of cells were vimentin +ve and 

<1% were EPCAM +ve (Fig. 1.b.iv).  

LPI derived cells could be reliably established in GMP-compliant media; DMPL, SM and 

SMPL, where doubling rate was consistent across all three passages (P1-P3) (Fig. 2.a). LPI 

MSC grown in SMPL however, returned significantly higher CFU-F at P2 and P3, compared 

to DMPL and SM (Fig 2.b). There were no differences in CFU-F between LPI MSC and BM 

MSC grown in in SMPL at any of the three passages assessed (Fig 2.c). LPI cells established 

in SMPL displayed a characteristic MSC-like phenotype through plastic adherence and 

spindle-shaped morphology, akin to that of BM derived MSC grown in SMPL (Fig. 3.a). LPI 

cultures also expressed all the relevant MSC markers including positive expression of CD73, 

CD90 and CD105 and no expression of CD45, CD19, CD11b, CD34, CD14 and CD31. This 

MSC surface marker expression was maintained and EPCAM expression was consistently 

lacking through all passages (P3-P5 illustrated fig.3.b.). LPI derived-cells expression levels 

of all the aforementioned markers were similar to BM MSC at P3 (Fig. 3.b). Finally, to 
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confirm that LPI-derived cells were MSC, LPI cultures were differentiated into the three 

classical lineages; bone, cartilage and adipose. Positive expression of FAB-4 (Fig.3.c.i), 

osteocalcin (Fig.3.c.ii) and aggrecan (Fig.3.c.iii) confirmed successful differentiation into all 

three lineages, thus LPI cultures were considered MSC-like cells and are referred to as LPI 

MSC throughout the text. 

LPI MSC and BM MSC express a range of immune modulatory and pro-regenerative 

factors  

To understand whether LPI derived MSC displayed therapeutically desirable regenerative and 

immunomodulatory potential, they were assayed for their transcriptional and protein 

expression of immune response modulating and pro-regenerative factors with and without 

licensing, and compared to BM MSC at the same passage (Fig. 4.a and b). Unlicensed LPI 

and BM MSC expressed similar transcriptional patterns of chemoattractant/inflammatory 

modulating molecules, with the exception of CX3CL1 (fractalkine) and IL-16, which were 

transcribed at marginally higher levels in the LPI MSC. Upon licensing, both MSC types 

uniformly upregulated the inflammatory regulators tumor necrosis factor-inducible gene 6 

(TSG-6) and IDO. Patterns in the transcript expression of the pro-angiogenic CXC 

chemokines were almost identical between LPI and BM MSC, where CXCL8 was the most 

highly transcribed pro-angiogenic gene in LPI and BM derived MSC, with or without 

licensing (Fig. 4.a.). Various monocyte (CCL2), macrophage (CCL4), dendritic cell 

(CCL20), and neutrophil chemoattractants (CXCL’s 1, 2, 3, 5, 6 & 8) were all upregulated 

upon LPI and BM MSC licensing (Fig. 4.a.). Conditioned media from the same cells used in 

transcriptional analyses were tested for a selection of pro-angiogenic and chemotactic factors.  

Secreted proteins from licensed LPI and BM MSC closely tracked the transcriptional 

observations, with high amounts of CCL2, CCL20 and CXCL8 detected in unlicensed MSC 
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supernatants which were markedly upregulated upon licensing. VEGF, a pro-angiogenic 

factor was also produced in moderate amounts by resting and licensed MSC from either 

source (Fig. 4.b.).  

Immune cell attraction profiles of LPI and BM MSC are comparable both in vitro and 

in vivo  

Chemotaxis assays were utilized to assess whether LPI and BM MSC were able to induce 

migration of immune cells. Unlicensed LPI MSC differed markedly from BM MSC in 

attracting significantly more CD45 +ve cells, specifically neutrophils and monocytes. Upon 

licensing, both LPI and BM MSC attracted neutrophils and monocytes, with little to no 

attraction of B lymphocytes (B cells), T cells, natural killer (NK) cells and eosinophils (Fig. 

5.a.). LPI MSC attracted proportionately more monocytes than BM MSC but this did not 

reach statistical significance. To establish if observed in vitro behaviors of LPI and BM MSC 

persisted in vivo, this analysis was extended to a murine air pouch model. In contrast to in 

vitro data, unlicensed LPI and BM MSC attracted similar total numbers of all immune cells, 

with no significant differences detected. As observed in vitro, licensing LPI and BM MSC 

resulted in a marked upregulation in the ability of MSC to induce migration of all immune 

cells. No significant differences in the total number of immune cells migrating towards 

licensed LPI or BM MSC were observed, with the exception of licensed BM MSC attracting 

significantly more NK cells than licensed LPI MSC. Notably, similar to in vitro migration 

data, neutrophils and monocytes made up the majority of migrating immune cells towards 

licensed or unlicensed LPI and BM MSC, however, the migration of moderate numbers of B 

cells, NK cells and eosinophils were also observed in vivo (Fig. 5.b).  

LPI MSC are potent suppressors of T cell proliferation 
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Next, suppression of T cell proliferation by LPI was assessed and compared to BM MSC. We 

first investigated the capacity of MSC to suppress T cell proliferation without licensing 

(Example analysis Fig 6.a). Either LPI or BM MSC strongly suppressed T cell proliferation at 

ratios of 1MSC:2 PBMC, and the effect titrated with reducing numbers of MSC (Fig.6.b). 

Suppression of proliferation by LPI MSC was significantly higher at 1:8 than with BM MSC. 

Given that strong suppressive effects were seen with unlicensed MSC, we further 

investigated the role that licensing plays in MSC-suppression of T cell proliferation. Overall, 

licensing MSC had no beneficial or detrimental effect on T cell suppression mediated by 

MSC compared to unlicensed MSC, and no significant differences were observed between 

LPI and BM MSC at any ratio tested (Fig.6.c).  

GMP-compliant method and density intensification - scale up for manufacturing 

To scale up for manufacturing, a suitable volume of LPI tissue and subsequent re-seeding 

densities of LPI MSC had to be determined. Initially, LPI tissue was tested at a density of 

0.006ml/cm2 or 0.03ml/cm2 (1ml or 5ml total LPI fraction per T175 flask in a total volume of 

35ml). Cells were more readily established using the lower seeding density of 0.006ml/cm2. 

(data not shown). Therefore, to model a complete manufacturing process, 1 ml of LPI tissue 

was seeded into a T175 (0.006ml/cm2), and thereafter re-seeded at 5000 cells/cm2. The 

median cell yield at P0 was 13106, with a range of cell yield between 72106 and 4.7106 

(Fig. 7.a). MSCs grown as described above reached median yields of 5200106 by P2 (Fig. 

7.a).  As waste tissue from a successful islet isolation ranges from 6mls to 22mls (Fig. 7.b), 

theoretical yields of LPI MSC at P2 could range from 37000106 (6mls) to 116000 106 

(22mls) (Fig. 7.c). Cells manufactured in this way maintained the CD45-ve HLA-DR-ve, 

CD73+, CD90+ CD105+ phenotype (Fig. 7.d). 
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Discussion 

In this study we have shown that LPI MSC culture can be easily initiated, and the cells can be 

expanded to therapeutic scale at low passage. We have extensively compared phenotype and 

function of LPI-derived MSC to BM MSC and show that LPI MSC share therapeutically 

relevant characteristics with BM MSC.  

Derivation of LPI-MSC 

MSC-like cells isolated from pancreatic tissue have been described by several groups (18, 

19), we sought to expand on this work to produce GMP-grade MSC cell populations, rather 

than to re-programme these cells e.g. into beta-like cells. In vitro expanded pancreatic MSC 

populations may arise from small numbers of resident MSC, or as a result of epithelial to 

mesenchymal transition (EMT) and has been explored elsewhere (22-25). The phenotypic 

changes of LPI isolates we have described in this study point to EMT as the principal 

mechanism underlying the derivation of LPI MSC cultures. We show that freshly isolated 

LPI tissue lacks cells expressing the mesenchymal markers CD105 and CD90, but is rich in 

EPCAM +ve cells. Over the 16 day in vitro expansion period to reach P0, EPCAM +ve cells 

gradually become positive for CD90 and CD105 followed by a reduction in EPCAM staining 

cells to <1% of the total population, which was maintained throughout subsequent passages. 

At P0 over 91% of cells express and the definitive mesenchymal marker vimentin. From P1 

onwards, the MSC express CD105, CD90 and CD73. It is therefore most likely the LPI-MSC 

manufacturing processes described in this study produces isolates of culture-induced MSC-

like cells as a result of in vitro EMT, although involvement of small populations of precursors 

cannot be entirely ruled out. 

Function and Phenotype 
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The ISCT criteria for definition of MSC (29) has underpinned all recent MSC research and 

the LPI MSC generated in this study met all of these criteria. Phenotype alone does not reveal 

whether MSC from different sources, or cultured using different methods have equal 

therapeutic capacity. We have recently reported that umbilical cord derived MSC when co-

transplanted with islets into diabetic mice have a greater benefit on glycaemic control versus 

adipose derived MSC (cultured identically) and that these MSC isolates differed widely in 

expression of genes important in immune-response and angiogenesis (13). Here, we took a 

similar standardised approach in our analysis to systematically compare LPI MSC to BM 

MSC to ensure that they share clinically applicable characteristics beyond basic phenotyping. 

Transcriptional analysis of more than 30 genes highlighted that LPI MSC express similar 

immune-modulatory, pro-angiogenic and chemotactic factors to BM MSC. BM and LPI MSC 

responded to licensing with an upregulation in a number of genes including the immune 

modulators TSG-6 (27) and IDO (28), the proangiogenic and neutrophil chemoattractants 

CXCL2 and CXCL8 (29, 30), and the monocyte chemoattractant (also pro-angiogenic) CCL2 

(31).  

We have shown that these transcribed genes translate into in vitro and in vivo activity of the 

MSC with similar patterns in protein secretion between LPI and BM MSC. In vitro, strong 

chemoattraction of myeloid cells was a function of licensed LPI and BM MSC. In vivo, 

unlicensed BM and LPI MSC both induced infiltration of neutrophils and monocytes into the 

injection site. This function was greatly amplified when MSC were licensed before injection. 

Recruitment of inflammatory cells may be an unexpected function of cells with proven anti-

inflammatory properties, however, recruitment of circulating monocytes has been shown to 

be critical for microvascular growth (32). Moreover, neutrophil recruitment is necessary for 

blood vessel formation in an in vivo angiogenesis model (33). The chemoattraction of 

immune cells towards MSC likely serves more than one purpose, extending beyond 
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angiogenesis to immunomodulation of these attracted immune cells, presumably altering the 

inflammatory environment. Here we show that BM and LPI MSC not only attract similar 

types and numbers of immune cells, they also express similar patterns of the 

immunomodulatory genes TSG-6, IDO and TGF-β whilst exerting similar capacity to 

suppress T cell proliferation.  The ability of MSC to attract immune cells and subsequently 

immunosuppress them is an important therapeutic mode of action of MSC which has been 

demonstrated in a model of GvHD (34). Treatment of GvHD is an area where LPI MSC may 

offer an advantage over BM MSC, as LPI MSC supressed T cell proliferation at lower T 

cell:MSC ratios, and attracted more myeloid cells in an unlicensed state. LPI MSC could also 

potentially be used in islet transplant recipients: MSC have been shown to enhance 

engraftment and function in experimental models (13). Patients routinely receive two islet 

grafts (20), hence MSC could be generated from the LPI of the first transplant and used 

subsequently as an MHC-matched accessory cell to support the second graft, with potentially 

reduced immune sensitization compared to third-party MSC. 

Manufacturing of LPI MSC 

Extending the applications of a donated pancreas beyond high purity islet transplantation to 

involve the manufacture of MSC from the LPI fraction would extend clinical application of 

the donated organ to potentially treat many patients. Recent registry data indicates >2600 

donated pancreata for islet processing (36) (North America, Europe and Australia) over a ten 

year period to 2015. LPI fractions are therefore routinely available from transplant centres 

and should be readily available for distribution to manufacturing centres. LPI-MSC grow 

rapidly, in xeno-free medium – a single T175 flask initially seeded with 1ml of LPI can 

generate 5.2109 cells after two in vitro passages, with theoretical yields from a single LPI 

fraction of 31.7109 – 116109. This would be sufficient MSC to manufacture 356-1303 

doses (based on 1106 per kg with a patient weighing 89kg). This compares favourably to 
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projected manufacturing yields for BM MSC under GMP conditions using a whole BM 

donation (20-37ml) and standard culture vessels (2,5): 6.6x109 at P2 and up to 6.3x109 at P1 

respectively. Manufacture of MSC, irrespective of source, at this scale would become 

impractical using standard culture vessels and would benefit from the use of bioreactors – not 

necessarily to increase yield (this is not guaranteed e.g. ref 37.), but for ease of handling and 

speed of processing. Manufacturing to very large scale may well not be required in a single 

centre - a single LPI fraction from a donated pancreas could therefore support manufacturing 

in a number of different centres from a single donation. Samples from a single isolation, in 

simple storage medium, are routinely distributed fresh from the SNBTS islet isolation lab 

around the UK to multiple centres, subject to appropriate consent. 

In summary, we have demonstrated that MSC, derived from low purity islets fractions (LPI), 

exhibit many of the ideal immune-responsive and pro-regenerative functions of MSC in vitro 

and in vivo. These cells are readily expanded from donated clinical-grade material that is 

currently an unused by-product of islet isolation, and we have demonstrated their successful 

manufacture using fully GMP-compliant materials to therapeutic dose at low passage. Further 

studies will be required to determine the therapeutic potency of this novel MSC population. 
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Figure Legends. 

Fig.1. GMP MSC culture derivation from waste LPI fractions of the islet isolation process  

a. Phase contrast micrographs of cellular outgrowth from islands of tissue isolated from 

LPI fractions. 14 days in culture results in characteristic cobblestone-shaped cells 

emerging from dithizone stained islets (ii) and exocrine tissue (iii), forming spindle-

shaped MSC-like cells at edges. Scale bar represents 0.2mm.  

b. Three parameter flow cytometry analysis of MSC and epithelial markers in LPI 

fraction over time. Flow cytometry plots show an increase in cells expressing CD90, 

CD105 and CD73 and a decrease in EPCAM expressing cells over time. An overlay 

of EPCAM (left column) and CD90 (right columns) show that MSC and epithelial 

markers are mutually exclusive (i-iii). At P1, LPI isolates lack EPCAM expression 

and express CD90, CD105, CD73 and vimentin.  

 

Fig. 2. LPI MSC growth characteristics in GMP compliant media and comparison to BM 

MSC   

a. Mean population doubling time for LPI-derived MSC lines in 3 different GMP-

compliant media. Mean +/- SD n=7.  DMPL – DMEM 5% Platelet lysate, SM – 

StemMACS, SMPL – StemMACS 5% Platelet lysate. 

b. Colony forming unit scores for LPI-derived MSC grown in DMPL, SM and SMPL 

across 3 passages (p1-p3) with numbers of colonies obtained from plating 10 

cells/cm2 in CFU-F (n=5). 

c. Colony forming unit scores for LPI-derived MSC vs BM MSC (n=9), both grown in 

SMPL across 3 passages. Data presented as mean ± SD and significance marked 

where applicable, p<0.05, ** p<0.01, *** p<0.001.  

 

Fig. 3. Morphology, Surface marker expression and differentiation capability of LPI MSC 

a. LPI isolate at P1 showing plastic-adherent cells with spindle-like MSC morphology 

(i), similar to that of BM-derived MSC at P2 (ii). SM + PL medium. Scale bar 

represents 400μm. 

b. Representative phenotypes of LPI MSC at P3-P5 (top panels) compared to BM MSC 

at P3 (bottom panels). LPI MSC homogeneously express CD90, CD105 and CD73, 

showing similar MFI to BM derived MSC. >99% of LPI MSC lack expression of 

CD45, CD11b, CD31, CD34, CD19 and CD14. Lack of EPCAM expression by LPI 

MSC is maintained through passage.  

c. Fluorescence micrographs of Tri-lineage differentiation of LPI-derived MSC into 

Adipose, Bone and Chondrocyte lineages (FAB-4, Osteocalcin and Aggrecan 

respectively). Matched isotype controls shown in bottom left inserts. Scale bar 

detailed in each picture.  
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Fig. 4. Gene and Protein expression of chemoattractant, pro-inflammatory and anti-

inflammatory genes in LPI and BM MSC 

a. Gene expression by resting and licensed MSCs. The expression of chemoattractant, 

and proangiogenic genes by resting (-) and licensed (+) LPI and BM MSC (P3) were 

measured by RT2 Profiler™ PCR Arrays. The expression of anti-inflammatory genes 

was measured using qRT PCR as indicated. In each case, the mean 2(-ΔCT) is plotted 

and heatmaps were generated using Heatmapper software 

(http://www2.heatmapper.ca/). Each group of genes was analysed separately. n>3<6 

donors. 

b. Mean levels of chemoattractant and proangiogenic proteins detected by Luminex 

assay in 24hr supernatants harvested from the cultures detailed above. Data represents 

total concentration of protein minus background levels of each protein found in 

medium. Analysed by Heatmapper software as above. n>3<6 donors. 

Fig. 5. In vitro and In vivo immune cell attraction of LPI and BM MSC 

a. In vitro chemoattraction of peripheral WBC. (i). Representative composition of WBC 

added to transwell insert at start of chemotaxis experiments. (ii). Migration of WBC 

to LPI or BM MSC in the unlicensed (-) or licensed (+) state. Data represents the total 

number of migrated cells minus the total number of background migrated cells and 

presented as mean ± SEM.  

b. In vivo airpouch model showing the total numbers of migrated immune cells into the 

airpouch containing licensed or unlicensed LPI or BM MSC. Data is presented as the 

total number of each migrated immune cell minus the total numbers in PBS injected 

control mice. Stacked bars represent mean ± SEM, n= 2 for each MSC donor and 5 

mice per group. 

Fig.6. Inhibition of T cell proliferation and requirement for IFN-γ licensing  

a. Representative dye dilution results measuring inhibition of T cell proliferation by LPI 

or BM MSC. Cells were grown in SMPL and assayed at P3 and cultured with Ef670-

stained PBMC. Ratios are PBMC:MSC at outset of culture.  

b. Comparative Inhibition of T cell proliferation by unlicensed LPI or BM MSC. Both 

MSC types inhibit proliferation and the effects titrate with reducing MSC numbers. 

Mean of 3 different LPI and 4 different BM lines grown in SMPL, ratios are 

PBMC:MSC.   

c. Comparative Inhibition of T cell proliferation by licensed LPI or BM MSC. Mean of 

3 different LPI and 4 different BM lines grown in SMPL, ratios are PBMC:MSC.  

 

Fig.7. Intensification of manufacturing with GMP reagents 

a. Total cell yields from 1ml of LPI tissue from P0 to P1 in GMP compliant medium. 

b. Total mls of transplanted tissue vs waste tissue in the GMP islet isolation process.  
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c. Predicted cell yields from the lowest volume of waste tissue (6ml) over 2 passages 

and the highest volume of waste tissue (22mls) over 2 passages.  

d. Flow cytometric analysis of LPI MSC grown using the intensified method 

demonstrating negativity for hematopoietic markers, and homogeneous expression of 

CD73, CD90 and CD105. SMPL medium passage 3. 
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Supplementary Methods 

S.1. WBC preparation.  

5mls of donor buffy coat was transferred into a 15ml centrifuge tube. Blood was spun at 300g 

for 40 minutes (0 break, 0 acceleration). The plasma layer was discarded and the remaining 

cells were washed with 1x red blood cell lysis solution (Miltenyi Biotec) for 7 minutes, after 

which cells were spun at 300g for 20 minutes (9 break, 9 acceleration). Supernatant was 

discarded and remaining cells were washed in 1xPBS. 5ml of buffy coat typically yielded 

1.5-2.5x108 WBCs. 

S.2. Air Pouch Model. 

For the air pouch, all animals were housed within the Biological Central Research Facility 

(University of Glasgow). All experiments received ethical approval and were performed 

under the auspices of a UK Home Office License. Project licence number: 70/ 8377, 

Procedure number: 10. All operators held appropriate personal home office licenses. 6 – 

week old C57BL/6 female mice were obtained from Charles River Europe and before any 

procedure was carried out, mice were given 7 days within the Biological Central Research 

Facility for adjustment and settling. After experimental procedures, at the age of 8 – week, 

mice were euthanised using a recognised Schedule 1 technique (CO2 followed by femoral 

artery exsanguination). 

Air pouches were generated as previously described (35). Briefly 3ml of sterile air was 

injected subcutaneously into the intracapsular area of the mouse to create an air pouch. After 

3 days, a top-up of 3 ml sterile air was injected into the air pouch. A third top up of 1ml 

sterile air was injected 2 days later and experimental material was injected 24 hours after the 

last air injection. Cells or PBS controls were left in the air pouch for 24 hours before mice 

were sacrificed. Immediately after sacrifice, 3ml of flow buffer was injected into the air 
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pouches of the mice and mice were gently shaken to allow the flow buffer to mix throughout 

the air pouch to ensure an optimal retrieval of immune cells. 
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Table S1. 

Monoclonal Antibodies for flow cytometry 

Study  Target Fluorophore Concentration Manufacturer 

MSC 

Phenotyping 

(Anti-human) 

CD45 BV421 1:100 

Biolegend 

CD19 BV421 1:100 

CD31 BV421 1:100 

CD45 BV421 1:100 

CD11b BV421 1:100 

CD14 BV421 1:100 

EPCAM BV650 1:100 

CD73 Pe/Cy7 1:100 

CD90 APC 1:100 
 

Miltenyi 
CD105 FITC 1:50 

Vimentin PE 1:50 

Viability Draq 7 1:200 Biostatus 

Fixable 

viability dye 

eFluorTM780 1:200 
eBioscience 

Chemotaxis 

assay 

(Anti-human) 

Siglec-8 PE 1:100 

Miltenyi 

CD4 FITC 1:100 

CD8 FITC 1:100 

CD14 VioBlue 1:100 

CD19 PeVio770 1:100 

CD66b APC 1:100 

CD1C 
SA-605 1:100 ThermoFisher 

Biotin 1:50 

Biolegend 
CD16 Percp/Cy5.5 1:100 

CD56 APCCy7 1:100 

HLA-DR AF700 1:100 

Fixable 

viability dye 

eFluor506 1:200 eBioscience 

Air Pouch Model 

Innate immune 

cells 

(Anti-Mouse) 

CD45 BV421 1:100 

Biolegend 

Siglec-F FITC 1:100 

F4/80 PE 1:100 

CD11c PerCP/Cy5.5 1:100 

CD11b Pe/Cy7 1:100 

Ly6g APC 1:100 

Ly6c APC/Cy7 1:100 

Viability  eFluor 506 1:100 

Biolegend 
Air Pouch Model 

Adaptive 

immune cells 

(Anti-Mouse) 

CD45 BV421 1:100 

CD8α PE 1:100 

CD4 Pe/Cy7 1:100 

NK1.1 APC 1:100 

B220 ApC/Cy7 1:100 

Anti-human 

CD105 

PerCP Cy5.5 1:100 

Viability eFluor 506 1:100 
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