6,442 research outputs found

    Influence of the Dirac sea on proton electromagnetic knockout

    Full text link
    We use the relativistic distorted-wave impulse approximation (RDWIA) to study the effects of negative-energy components of Dirac wave functions on the left-right asymmetry for (e,e'p) reactions on 16-O with 0.2 < Q^2 < 0.8 and 12-C with 0.6 < Q^2 < 1.8 (GeV/c)^2. Spinor distortion is more important for the bound state than for the ejectile and the net effect decreases with Q^2. Spinor distortion breaks Godon equivalence and the data favor the CC2 operator with intermediate coupling to the sea. The left-right asymmetry for Q^2 < 1.2 (GeV/c)^2 is described well by RDWIA calcuations, but at Q^2 = 1.8 (GeV/c)^2 the observed variation with missing momentum is flatter than predicted.Comment: 12 pages, 9 figures, to be submitted to PR

    An approach to evolving cell signaling networks in silico

    Get PDF
    Cell Signaling Networks(CSN) are complex bio-chemical networks which, through evolution, have become highly efficient for governing critical control processes such as immunological responses, cell cycle control or homeostasis. From a computational point of view, modeling Artificial Cell Signaling Networks (ACSNs) in silico may provide new ways to design computer systems which may have specialized application areas. To investigate these new opportunities, we review the key issues of modeling ACSNs identified as follows. We first present an analogy between analog and molecular computation. We discuss the application of evolutionary techniques to evolve biochemical networks for computational purposes. The potential roles of crosstalk in CSNs are then examined. Finally we present how artificial CSNs can be used to build robust real-time control systems. The research we are currently involved in is part of the multi disciplinary EU funded project, ESIGNET, with the central question of the study of the computational properties of CSNs by evolving them using methods from evolutionary computation, and to re-apply this understanding in developing new ways to model and predict real CSNs. This also complements the present requirements of Computational Systems Biology by providing new insights in micro-biology research

    The Final Merger of Black-Hole Binaries

    Full text link
    Recent breakthroughs in the field of numerical relativity have led to dramatic progress in understanding the predictions of General Relativity for the dynamical interactions of two black holes in the regime of very strong gravitational fields. Such black-hole binaries are important astrophysical systems and are a key target of current and developing gravitational-wave detectors. The waveform signature of strong gravitational radiation emitted as the black holes fall together and merge provides a clear observable record of the process. After decades of slow progress, these mergers and the gravitational-wave signals they generate can now be routinely calculated using the methods of numerical relativity. We review recent advances in understanding the predicted physics of events and the consequent radiation, and discuss some of the impacts this new knowledge is having in various areas of astrophysics.Comment: 57 pages; 9 figures. Updated references & fixed typos. Published version is at http://www.annualreviews.org/doi/abs/10.1146/annurev.nucl.010909.08324

    Black-hole binaries, gravitational waves, and numerical relativity

    Full text link
    Understanding the predictions of general relativity for the dynamical interactions of two black holes has been a long-standing unsolved problem in theoretical physics. Black-hole mergers are monumental astrophysical events, releasing tremendous amounts of energy in the form of gravitational radiation, and are key sources for both ground- and space-based gravitational-wave detectors. The black-hole merger dynamics and the resulting gravitational waveforms can only be calculated through numerical simulations of Einstein's equations of general relativity. For many years, numerical relativists attempting to model these mergers encountered a host of problems, causing their codes to crash after just a fraction of a binary orbit could be simulated. Recently, however, a series of dramatic advances in numerical relativity has allowed stable, robust black-hole merger simulations. This remarkable progress in the rapidly maturing field of numerical relativity, and the new understanding of black-hole binary dynamics that is emerging is chronicled. Important applications of these fundamental physics results to astrophysics, to gravitational-wave astronomy, and in other areas are also discussed.Comment: 54 pages, 42 figures. Some typos corrected & references updated. Essentially final published versio

    Ecological thinking: Four qualities

    Get PDF
    O artigo propõe uma viagem em torno dos pressupostos ecológicos ou atributos do pensamento ecológico. Identifica as suas principais quatro qualidades e procura demonstrar como se podem fundamentar em evidência empírica. A primeira das premissas focaliza-se na interdependência das pessoas e os seus ambientes sociais, a segunda que as metodologias de investigação podem ser congruentes com a cultura de um lugar ou de um contexto concretos. Em terceiro lugar que ao(à) psicólogo(a) comunitário é requerido que desenvolva relações de confiança e a quarta que na sua busca de entendimento acerca da comunidade aprenda mais sobre si próprio(a)

    Preliminary steps toward artificial protocell computation

    Get PDF
    Protocells are hypothesised as a transitional phase in the origin of life, prior to the evolution of fully functional prokaryotic cells. The work reported here is being done in the context of the PACE project, which is investigating the fabrication of artificial protocells de novo. We consider here the important open question of whether or how articifial protocells (if or when they are successfully fabricated) might be applied as “computing” devices—what sort of computing might they be suitable for, and how might they be “programmed”? We also present some preliminary analysis of a crude model of such “evolutionary protocell computation”

    False discovery rate regression: an application to neural synchrony detection in primary visual cortex

    Full text link
    Many approaches for multiple testing begin with the assumption that all tests in a given study should be combined into a global false-discovery-rate analysis. But this may be inappropriate for many of today's large-scale screening problems, where auxiliary information about each test is often available, and where a combined analysis can lead to poorly calibrated error rates within different subsets of the experiment. To address this issue, we introduce an approach called false-discovery-rate regression that directly uses this auxiliary information to inform the outcome of each test. The method can be motivated by a two-groups model in which covariates are allowed to influence the local false discovery rate, or equivalently, the posterior probability that a given observation is a signal. This poses many subtle issues at the interface between inference and computation, and we investigate several variations of the overall approach. Simulation evidence suggests that: (1) when covariate effects are present, FDR regression improves power for a fixed false-discovery rate; and (2) when covariate effects are absent, the method is robust, in the sense that it does not lead to inflated error rates. We apply the method to neural recordings from primary visual cortex. The goal is to detect pairs of neurons that exhibit fine-time-scale interactions, in the sense that they fire together more often than expected due to chance. Our method detects roughly 50% more synchronous pairs versus a standard FDR-controlling analysis. The companion R package FDRreg implements all methods described in the paper

    Consistency of post-Newtonian waveforms with numerical relativity

    Get PDF
    General relativity predicts the gravitational wave signatures of coalescing binary black holes. Explicit waveform predictions for such systems, required for optimal analysis of observational data, have so far been achieved using the post-Newtonian (PN) approximation. The quality of this treatment is unclear, however, for the important late-inspiral portion. We derive late-inspiral waveforms via a complementary approach, direct numerical simulation of Einstein's equations. We compare waveform phasing from simulations of the last 14\sim 14 cycles of gravitational radiation from equal-mass, nonspinning black holes with the corresponding 2.5PN, 3PN, and 3.5PN orbital phasing. We find phasing agreement consistent with internal error estimates based on either approach, suggesting that PN waveforms for this system are effective until the last orbit prior to final merger.Comment: Replaced with published version -- one figure removed, text and other figures updated for clarity of discussio

    Toward faithful templates for non-spinning binary black holes using the effective-one-body approach

    Full text link
    We present an accurate approximation of the full gravitational radiation waveforms generated in the merger of non-eccentric systems of two non-spinning black holes. Utilizing information from recent numerical relativity simulations and the natural flexibility of the effective-one-body (EOB) model, we extend the latter so that it can successfully match the numerical relativity waveforms during the last stages of inspiral, merger and ringdown. By ``successfully'' here, we mean with phase differences < 8% of a gravitational-wave cycle accumulated by the end of the ringdown phase, maximizing only over time of arrival and initial phase. We obtain this result by simply adding a 4-post-Newtonian order correction in the EOB radial potential and determining the (constant) coefficient by imposing high-matching performances with numerical waveforms of mass ratios m1/m2 = 1, 3/2, 2 and 4, m1 and m2 being the individual black-hole masses. The final black-hole mass and spin predicted by the numerical simulations are used to determine the ringdown frequency and decay time of three quasi-normal-mode damped sinusoids that are attached to the EOB inspiral-(plunge) waveform at the EOB light-ring. The EOB waveforms might be tested and further improved in the future by comparison with extremely long and accurate inspiral numerical-relativity waveforms. They may already be employed for coherent searches and parameter estimation of gravitational waves emitted by non-spinning coalescing binary black holes with ground-based laser-interferometer detectors.Comment: 15 pages, 9 figure
    corecore