4,068 research outputs found

    The Inherent Limitations Doctrine: How the Specification May Inherently Limit the Scope of the Claims, 1 J. Marshall Rev. Intell. Prop. L. 124 (2001)

    Get PDF
    In several recent decisions, the United States Court of Appeals for the Federal Circuit has established that a patentee’s express words, as disclosed in the specification, may be read into the claims to limit the scope of the invention. In addition, the Federal Circuit in Scimed and Bell Atlantic has held that not only may a patentee explicitly limit a claim term in the specification, but she may also do so “by implication.” Thus, a specification may inherently limit the scope of a claimed invention constituting what the author calls the “inherent limitations doctrine.” This new wrinkle in claim interpretation will likely produce a wave of confusion for future litigants and judges. This Comment proposes that if the Federal Circuit does apply the inherent limitations doctrine at all, the court should do so prospectively. This Comment also proposes a set of factors the court can use to determine where to apply the doctrine

    Performance assessment of tariff-based air source heat pump load shifting in a UK detached dwelling featuring phase change-enhanced buffering

    Get PDF
    Using a detailed building simulation model, the amount of thermal buffering, with and without phase change material (PCM), needed to time-shift an air source heat pump's operation to off-peak periods, as defined by the UK 'Economy 10' tariff, was investigated for a typical UK detached dwelling. The performance of the buffered system was compared to the case with no load shifting and with no thermal buffering. Additionally, the load shifting of a population of buffered heat pumps to off-peak periods was simulated and the resulting change in the peak demand on the electricity network was assessed. The results from this study indicate that 1000 L of hot water buffering or 500 L of PCM-enhanced hot water buffering was required to move the operation of the heat pump fully to off-peak periods, without adversely affecting the provision of space heating and hot water for the end user. The work also highlights that buffering and load shifting increased the heat pump's electrical demand by over 60% leading to increased cost to the end user and increased CO2 emissions (depending on the electricity tariff applied and time varying CO2 intensity of the electricity generation mix, respectively). The study also highlights that the load-shifting of populations of buffered heat pumps wholly to off-peak periods using crude instruments such as tariffs increased the peak loading on the electrical network by over 50% rather than reducing it and that careful consideration is needed as to how the load shifting of a group of heat pumps is orchestrated

    Computer Controlled Solid State Lighting Assembly to Emulate Diurnal Cycle and Improve Circadian Rhythm Control

    Get PDF
    A light system can simultaneously emulate more than one different diurnal cycle to individually improve circadian rhythm control for more than one observer by having each light fixture autonomously self-controlled. Each light fixture is mountable in respective locations to individually treat respective observers. Each light fixture includes one or more light elements mounted to a housing and are controllable to emit a selected light intensity at a selected light temperature. A micro controller is contained in the housing and includes memory containing instructions for one or more automatic diurnal cycle protocols. The micro controller is in communication with the memory and the one or more light elements to execute the instructions to configure the light fixture to vary the light intensity and the light temperature of the emitted light

    MARVEL analysis of the measured high-resolution rovibrational spectra of C2H2

    Get PDF
    Rotation-vibration energy levels are determined for the electronic ground state of the acetylene molecule, 12^{12}C2_2H2_2, using the Measured Active Rotational-Vibrational Energy Levels (MARVEL) technique. 37,813 measured transitions from 61 publications are considered. The distinct components of the spectroscopic network linking ortho and para states are considered separately. The 20,717 ortho and 17,096 para transitions measured experimentally are used to determine 6013 ortho and 5200 para energy levels. The MARVEL results are compared with alternative compilations based on the use of effective Hamiltonians.Comment: 55 pages, 8 figures, JQSRT, 201

    Novel actions of next-generation taxanes benefit advanced stages of prostate cancer.

    Get PDF
    PURPOSE: To improve the outcomes of patients with castration-resistant prostate cancer (CRPC), there is an urgent need for more effective therapies and approaches that individualize specific treatments for patients with CRPC. These studies compared the novel taxane cabazitaxel with the previous generation docetaxel, and aimed to determine which tumors are most likely to respond. EXPERIMENTAL DESIGN: Cabazitaxel and docetaxel were compared via in vitro modeling to determine the molecular mechanism, biochemical and cell biologic impact, and cell proliferation, which was further assessed ex vivo in human tumor explants. Isogenic pairs of RB knockdown and control cells were interrogated in vitro and in xenograft tumors for cabazitaxel response. RESULTS: The data herein show that (i) cabazitaxel exerts stronger cytostatic and cytotoxic response compared with docetaxel, especially in CRPC; (ii) cabazitaxel induces aberrant mitosis, leading to pyknotic and multinucleated cells; (iii) taxanes do not act through the androgen receptor (AR); (iv) gene-expression profiling reveals distinct molecular actions for cabazitaxel; and (v) tumors that have progressed to castration resistance via loss of RB show enhanced sensitivity to cabazitaxel. CONCLUSIONS: Cabazitaxel not only induces improved cytostatic and cytotoxic effects, but also affects distinct molecular pathways, compared with docetaxel, which could underlie its efficacy after docetaxel treatment has failed in patients with CRPC. Finally, RB is identified as the first potential biomarker that could define the therapeutic response to taxanes in metastatic CRPC. This would suggest that loss of RB function induces sensitization to taxanes, which could benefit up to 50% of CRPC cases

    Issues With Variability in Electronic Health Record Data About Race and Ethnicity: Descriptive Analysis of the National COVID Cohort Collaborative Data Enclave

    Get PDF
    Background:The adverse impact of COVID-19 on marginalized and under-resourced communities of color has highlighted the need for accurate, comprehensive race and ethnicity data. However, a significant technical challenge related to integrating race and ethnicity data in large, consolidated databases is the lack of consistency in how data about race and ethnicity are collected and structured by health care organizations. Objective:This study aims to evaluate and describe variations in how health care systems collect and report information about the race and ethnicity of their patients and to assess how well these data are integrated when aggregated into a large clinical database. Methods:At the time of our analysis, the National COVID Cohort Collaborative (N3C) Data Enclave contained records from 6.5 million patients contributed by 56 health care institutions. We quantified the variability in the harmonized race and ethnicity data in the N3C Data Enclave by analyzing the conformance to health care standards for such data. We conducted a descriptive analysis by comparing the harmonized data available for research purposes in the database to the original source data contributed by health care institutions. To make the comparison, we tabulated the original source codes, enumerating how many patients had been reported with each encoded value and how many distinct ways each category was reported. The nonconforming data were also cross tabulated by 3 factors: patient ethnicity, the number of data partners using each code, and which data models utilized those particular encodings. For the nonconforming data, we used an inductive approach to sort the source encodings into categories. For example, values such as “Declined” were grouped with “Refused,” and “Multiple Race” was grouped with “Two or more races” and “Multiracial.” Results:“No matching concept” was the second largest harmonized concept used by the N3C to describe the race of patients in their database. In addition, 20.7% of the race data did not conform to the standard; the largest category was data that were missing. Hispanic or Latino patients were overrepresented in the nonconforming racial data, and data from American Indian or Alaska Native patients were obscured. Although only a small proportion of the source data had not been mapped to the correct concepts (0.6%), Black or African American and Hispanic/Latino patients were overrepresented in this category. Conclusions:Differences in how race and ethnicity data are conceptualized and encoded by health care institutions can affect the quality of the data in aggregated clinical databases. The impact of data quality issues in the N3C Data Enclave was not equal across all races and ethnicities, which has the potential to introduce bias in analyses and conclusions drawn from these data. Transparency about how data have been transformed can help users make accurate analyses and inferences and eventually better guide clinical care and public policy

    Issues with variability in electronic health record data about race and ethnicity: Descriptive analysis of the National COVID Cohort Collaborative Data Enclave

    Get PDF
    BACKGROUND: The adverse impact of COVID-19 on marginalized and under-resourced communities of color has highlighted the need for accurate, comprehensive race and ethnicity data. However, a significant technical challenge related to integrating race and ethnicity data in large, consolidated databases is the lack of consistency in how data about race and ethnicity are collected and structured by health care organizations. OBJECTIVE: This study aims to evaluate and describe variations in how health care systems collect and report information about the race and ethnicity of their patients and to assess how well these data are integrated when aggregated into a large clinical database. METHODS: At the time of our analysis, the National COVID Cohort Collaborative (N3C) Data Enclave contained records from 6.5 million patients contributed by 56 health care institutions. We quantified the variability in the harmonized race and ethnicity data in the N3C Data Enclave by analyzing the conformance to health care standards for such data. We conducted a descriptive analysis by comparing the harmonized data available for research purposes in the database to the original source data contributed by health care institutions. To make the comparison, we tabulated the original source codes, enumerating how many patients had been reported with each encoded value and how many distinct ways each category was reported. The nonconforming data were also cross tabulated by 3 factors: patient ethnicity, the number of data partners using each code, and which data models utilized those particular encodings. For the nonconforming data, we used an inductive approach to sort the source encodings into categories. For example, values such as Declined were grouped with Refused, and Multiple Race was grouped with Two or more races and Multiracial. RESULTS: No matching concept was the second largest harmonized concept used by the N3C to describe the race of patients in their database. In addition, 20.7% of the race data did not conform to the standard; the largest category was data that were missing. Hispanic or Latino patients were overrepresented in the nonconforming racial data, and data from American Indian or Alaska Native patients were obscured. Although only a small proportion of the source data had not been mapped to the correct concepts (0.6%), Black or African American and Hispanic/Latino patients were overrepresented in this category. CONCLUSIONS: Differences in how race and ethnicity data are conceptualized and encoded by health care institutions can affect the quality of the data in aggregated clinical databases. The impact of data quality issues in the N3C Data Enclave was not equal across all races and ethnicities, which has the potential to introduce bias in analyses and conclusions drawn from these data. Transparency about how data have been transformed can help users make accurate analyses and inferences and eventually better guide clinical care and public policy

    An alternative strategy for trypanosome survival in the mammalian bloodstream revealed through genome and transcriptome analysis of the ubiquitous bovine parasite Trypanosoma (Megatrypanum) theileri

    Get PDF
    There are hundreds of Trypanosoma species that live in the blood and tissue spaces of their vertebrate hosts. The vast majority of these do not have the ornate system of antigenic variation that has evolved in the small number of African trypanosome species, but can still maintain long term infections in the face of the vertebrate adaptive immune system. Trypanosoma theileri is a typical example, it has a restricted host range of cattle and other Bovinae and is only occasionally reported to cause patent disease although no systematic survey of the effect of infection on agricultural productivity has been performed. Here, a detailed genome sequence and a transcriptome analysis of gene expression in bloodstream form T. theileri have been performed. Analysis of the genome sequence and expression showed that T. theileri has a typical kinetoplastid genome structure and allowed a prediction that it is capable of meiotic exchange, gene silencing via RNA interference and, potentially, density-dependent growth control. In particular, the transcriptome analysis has allowed a comparison of two distinct trypanosome cell surfaces, T. brucei and T. theileri, that have each evolved to enable the maintenance of a long-term extracellular infection in cattle. The T. theileri cell surface can be modelled to contain a mixture of proteins encoded by four novel large and divergent gene families and by members of a major surface protease gene family. This surface composition is distinct from the uniform variant surface glycoprotein coat on African trypanosomes providing an insight into a second mechanism used by trypanosome species that proliferate in an extracellular milieu in vertebrate hosts to avoid the adaptive immune response

    Differential susceptibility of C57BL/6NCr and B6.Cg-Ptprca mice to commensal bacteria after whole body irradiation in translational bone marrow transplant studies

    Full text link
    Abstract Background The mouse is an important and widely utilized animal model for bone marrow transplant (BMT) translational studies. Here, we document the course of an unexpected increase in mortality of congenic mice that underwent BMT. Methods Thirty five BMTs were analyzed for survival differences utilizing the Log Rank test. Affected animals were evaluated by physical examination, necropsy, histopathology, serology for antibodies to infectious disease, and bacterial cultures. Results Severe bacteremia was identified as the main cause of death. Gastrointestinal (GI) damage was observed in histopathology. The bacteremia was most likely caused by the translocation of bacteria from the GI tract and immunosuppression caused by the myeloablative irradiation. Variability in groups of animals affected was caused by increased levels of gamma and X-ray radiation and the differing sensitivity of the two nearly genetically identical mouse strains used in the studies. Conclusion Our retrospective analysis of thirty five murine BMTs performed in three different laboratories, identified C57BL/6NCr (Ly5.1) as being more radiation sensitive than B6.Cg-Ptprca/NCr (Ly5.2). This is the first report documenting a measurable difference in radiation sensitivity and its effects between an inbred strain of mice and its congenic counterpart eventually succumbing to sepsis after BMT.http://deepblue.lib.umich.edu/bitstream/2027.42/112743/1/12967_2007_Article_240.pd

    3D-imaging of Printed Nanostructured Networks using High-resolution FIB-SEM Nanotomography

    Full text link
    Networks of solution-processed nanomaterials are important for multiple applications in electronics, sensing and energy storage/generation. While it is known that network morphology plays a dominant role in determining the physical properties of printed networks, it remains difficult to quantify network structure. Here, we utilise FIB-SEM nanotomography to characterise the morphology of nanostructured networks. Nanometer-resolution 3D-images were obtained from printed networks of graphene nanosheets of various sizes, as well as networks of WS2 nanosheets, silver nanosheets and silver nanowires. Important morphological characteristics, including network porosity, tortuosity, pore dimensions and nanosheet orientation were extracted and linked to network resistivity. By extending this technique to interrogate the structure and interfaces within vertical printed heterostacks, we demonstrate the potential of this technique for device characterisation and optimisation.Comment: 6 figure
    • 

    corecore