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a b s t r a c t 

Rotation-vibration energy levels are determined for the electronic ground state of the acetylene molecule, 
12 C 2 H 2 , using the Measured Active Rotational-Vibrational Energy Levels ( Marvel ) technique. 37,813 mea- 

sured transitions from 61 publications are considered. The distinct components of the spectroscopic net- 

work linking ortho and para states of the molecule are considered separately. The 20,717 ortho and 17,096 

para transitions measured experimentally are used to determine 6013 ortho and 5200 para energy levels. 

The Marvel results are compared with alternative compilations based on the use of effective Hamiltoni- 

ans. 

© 2017 The Authors. Published by Elsevier Ltd. 
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1. Introduction 

Acetylene, HCCH, is a linear tetratomic unsaturated hydrocarbon

whose rovibronic spectrum is important in a large range of envi-

ronments. The temperatures of these environments range from the

hot, oxy-acetyene flames which are widely used for welding and

related activities [1] , temperate, where monitoring of acetylene in

breath gives insights into the nature of exhaled smoke [2] , to the

cold, where the role of acetylene in the formation of carbon dust

in the interstellar medium is a subject of debate [3] . Furthermore,

acetylene is observed in star-forming regions [4] and thought to

be an important constituent of clouds in the upper atmospheres

of brown dwarfs and exoplanets [5] . Acetylene provides a major

source of opacity in the atmospheres of cool carbon stars [6,7] . It

is present in various planetary and lunar atmospheres in the so-

lar system, including Jupiter and Titan [8] , and has been detected

on comets [9] . The first analysis of the atmosphere of a super-

Earth exoplanet, 55 Cancri e [10] , speculate that acetylene could

be present in its atmosphere; however, the spectral data currently
∗ Corresponding authors. 
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vailable does not allow for an accurate verification of the presence

f acetylene in such a high-temperature environment. 

The high-resolution spectrum of acetylene has long been stud-

ed in the laboratory, particularly by the group of Herman in Brus-

els. A full analysis of these experimental studies is given be-

ow. Herman and co-workers have written a number of reviews

bout the rovibrational behaviour of acetylene in its ˜ X 

1 �+ 
g ground

lectronic state [11–13] . Besides summarizing the status of the

otation-vibration spectroscopy of the system, these reviews also

ive insight into the internal dynamics of the system, a topic not

onsidered here. 

A number of variational nuclear motion calculations have been

erformed for the ground electronic state of acetylene [14–19] .

ew theoretical rovibrational calculations for this molecule are in

rogress as part of the ExoMol project [20,21] , a database of the-

retical line lists for molecules of astrophysical importance, appro-

riate up to high temperatures of around 30 0 0 K, for use in char-

cterising the atmospheres of cool stars and exoplanets. High accu-

acy experimental energy levels, like those obtained in this study,

rovide essential input for testing and improving theoretically cal-

ulated line positions. 

In this work we present the largest compilation of published

xperimental rovibrational transitions for the 12 C 2 H 2 molecule,

hich has been formatted and analysed using the Marvel (Mea-

ured Active Rotational-Vibrational Energy Levels) spectroscopic
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Table 1 

Quantum numbers used to label the upper and lower energy states of 12 C 2 H 2 . 

Label Description 

v 1 CH symmetric stretch ( σ+ 
g ) 

v 2 CC symmetric stretch ( σ+ 
g ) 

v 3 CH antisymmetric stretch ( σ+ 
u ) 

v 4 Symmetric (trans) bend ( π g ) 

� 4 Vibrational angular momentum associated with v 4 
v 5 Antisymmetric (cis) bend ( πu ) 

� 5 Vibrational angular momentum associated with v 5 
K Total vibrational angular momentum, | � 4 + � 5 | , and rotational quantum number 

J Rotational angular momentum 

e / f Symmetry relative to the Wang transformation (see text) 

ortho/para Nuclear spin state (see text) 

Table 2 

Parity of states in 12 C 2 H 2 

based on the symmetry 

labels used in this work. 

e / f J Parity 

e Odd −
e Even + 

f Odd + 

f Even −

Table 3 

Allowed combinations of symmetry labels for rovi- 

brational states (including nuclear spin) of 12 C 2 H 2 , 

where s = symmetric, a = antisymmetric, ‘Total’ is 

how the ro-vibronic wavefunction, including the 

nuclear spin, acts under permutation symmetry. 

u / g + / − Ro-vib. Nuclear spin Total 

u + a Ortho a 

u − s Para a 

g + s Para a 

g − a Ortho a 
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Fig. 1. Marvel energy levels (cm 

−1 ) as a function of rotational quantum number, J , 

for all the vibrational bands in the ortho network component analysed in this paper. 

Fig. 2. Marvel energy levels (cm 

−1 ) as a function of rotational quantum number, J , 

for all the vibrational bands in the para network component analysed in this paper. 
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etwork software, the results of which are presented and dis-

ussed in this paper. The next section gives the underlying the-

ry used for the study. Section 3 presents and discusses the

xperimental sources used. Results are given in Section 4 .

ection 5 discusses these results; this section presents comparisons

ith recent empirical databases due to Amyay et al. [22] (hence-

orth 16AmFaHe), Lyulin and Campargue [23] (henceforth 17LyCa)

nd Lyulin and Perevalov [24] (henceforth 17LyPe), which builds on

heir earlier work [25] , all of which only became available while

he present study was being undertaken. Finally, Section 6 gives

ur conclusions. 

. Theory 

.1. MARVEL 

The Marvel procedure [26,27] is based on the theory of spec-

roscopic networks (SNs) [28,29] and is principally based on earlier

ork by Flaud et al. [30] and Watson [31,32] . The Marvel proto-

ol can be used to critically evaluate and validate experimentally-

etermined transition wavenumbers and uncertainties collected 

rom the literature. It inverts the wavenumber information to ob-

ain accurate energy levels with an associated uncertainty. Marvel

as been successfully used to evaluate empirical energy levels for

olecules such as TiO [33], 14 NH 3 [34,35] , water vapour [36–40] ,

 2 D 

+ and D 2 H 

+ [41] , H 

+ 
3 

[42] , and C 2 [43] . To be useful for Mar-

el , measured transitions must have an associated uncertainty and

ach state must be uniquely labelled, typically by a set of quantum

umbers. It should be noted that while Marvel requires unique-
ess it does not require these quantum numbers to be strictly cor-

ect, or indeed even meaningful, beyond obeying rigorous selection

ules; these assignments simply act as labels for each state. Never-

heless, it greatly aids comparisons with other data if they contain

hysically sensible information. The quantum numbers used in the

resent study are considered in the following section. 

.2. Quantum number labelling 

The 11 quantum numbers used in this study for labelling the

pper and lower rovibrational states of 12 C 2 H 2 are detailed in

able 1 . This label includes the quanta of excitation of each
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Table 4 

Extract from the Marvel input file for the ortho transitions. The full file is supplied as part of the supplementary 

information to this paper. All energy term values and uncertainties are in units of cm 

−1 . The assignments are detailed 

in Table 1 . 

Energy Uncertainty Upper assignment Lower assignment Reference 

1248.2620 0.0 0 05 0 0 0 1 1 1 -1 0 34 e ortho 0 0 0 0 0 0 0 0 35 e ortho 00Vander_table2_l1 

1252.8546 0.0 0 05 0 0 0 1 1 1 -1 0 32 e ortho 0 0 0 0 0 0 0 0 33 e ortho 00Vander_table2_l2 

1257.4230 0.0 0 05 0 0 0 1 1 1 -1 0 30 e ortho 0 0 0 0 0 0 0 0 31 e ortho 00Vander_table2_l4 

1261.9694 0.0 0 05 0 0 0 1 1 1 -1 0 28 e ortho 0 0 0 0 0 0 0 0 29 e ortho 00Vander_table2_l6 

1266.4970 0.0 0 05 0 0 0 1 1 1 -1 0 26 e ortho 0 0 0 0 0 0 0 0 27 e ortho 00Vander_table2_l8 

1271.0098 0.0 0 05 0 0 0 1 1 1 -1 0 24 e ortho 0 0 0 0 0 0 0 0 25 e ortho 00Vander_table2_l10 

1275.5122 0.0 0 05 0 0 0 1 1 1 -1 0 22 e ortho 0 0 0 0 0 0 0 0 23 e ortho 00Vander_table2_l11 

Fig. 3. Ortho component of the spectroscopic network of 12 C 2 H 2 produced using Marvel input data. 
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vibrational mode in normal-mode notation:

v 1 , v 2 , v 3 , v 4 , � 4 , v 5 , � 5 , K = | � 4 + � 5 | and J , where v 1 , . . . , v 5 are

the vibrational quantum numbers, � 4 and � 5 are the vibrational

angular momentum quantum numbers associated with v 4 and

v 5 , respectively, with | � | = v , v − 2 . . . 1 for odd v , | l| = v , v − 2 . . . 0

for even v . K = | k | is the rotational quantum number, with k

corresponding to the projection of the rotational angular mo-

mentum, J , on the z axis. K is also equal to the total vibrational

angular momentum quantum number, | L | = | � 4 + � 5 | , and there-

fore K will be also referred to as the total vibrational angular

momentum. J is the quantum number associated with rotational

angular momentum, J . We follow the phase convention of the

Belgium group [13] for K ≡ | k | = | � 4 + � 5 | , with � 4 ≥ 0 if k = 0 . We

also use the e or f labelling, along with the nuclear spin state

( ortho or para ). 
The quantum number assignments for this work were taken

rom the original sources where possible, with any exceptions

oted in Sections 3.1 and 3.2 : particular reference should be made

o the general comments (1) and (2) in 3.2. While Marvel requires

 unique set of quantum numbers for each state, it merely treats

hese as labels and whether they are strictly correct or not does

ot affect the validity of the results. Nevertheless, labelling with

ensible assignments aids comparisons with other datasets. 

Levels with parity +(−1) J are called e levels and those

ith parity −(−1) J are called f levels. In other words, e and

 levels transform in the same way as the rotational levels

f 1 �+ and 

1 �− states of linear molecules, respectively [44] .

able 2 gives the combinations of e / f and J with correspond-

ng parity. States of a linear molecule are often also classi-

ed based on inversion, with states which are left unchanged
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Table 5 

Data sources used in this study with wavenumber range, numbers of transitions and approximate temperature of the exper- 

iment. A/V stands for the number of transitions analysed/verified. ‘RT’ stands for room temperature. See Section 3.1 for the 

notes. 

Tag Reference Range (cm 

−1 ) A/V Bands Temperature Note 

09YuDrPe Yu et al. [51] 29–55 20/20 5 RT 

16AmFaHe_kab91 Kabbadj et al. [52] 61–1440 3233/3233 47 RT 

16AmFaHe_amy10 Amyay et al. [53] 63–7006 1232/1232 36 RT 

11DrYu Drouin and Yu [54] 85–92 20/20 7 RT 

17JaLyPe Jacquemart et al. [55] 429–592 627/627 9 RT 

81HiKa Hietanen and Kauppinen [56] 628–832 6 84/6 84 5 RT (3a) 

93WeBlNa Weber et al. [57] 632–819 1610/1609 13 RT (3b) 

00MaDaCl Mandin et al. [58] 644–820 77/77 1 RT 

01JaClMa Jacquemart et al. [59] 656–800 355/355 4 RT 

50BeNi Bell and Nielsen [60] 671–4160 500/0 13 RT (3c) 

16AmFaHe_gom10 Gomez et al. [61] 1153–1420 27/27 3 RT 

16AmFaHe_gom09 Gomez et al. [62] 1247–1451 66/66 8 RT 

00Vander Auwera [63] 1248–1415 64/64 2 RT 

16AmFaHe_amy09 Amyay et al. [64] 1253–3422 3791/3777 57 Up to 1455 K (3d) 

03JaMaDa Jacquemart et al. [65] 1810–2235 4 86/4 86 14 RT 

03JaMaDab Jacquemart et al. [66] 3207–3358 109/109 2 RT 

16AmFaHe_jac02 Jacquemart et al. [67] 1860–2255 150/150 3 RT 

72Pliva Plíva [45] 1865–2598 1016/1015 15 RT 

16AmFaHe_ber98 Bermejo et al. [68] 1957–1960 19/19 1 RT (3e) 

16AmFaHe_jac07 Jacquemart et al. [69] 2515–2752 148/148 3 RT 

16AmFaHe_pal72 Palmer et al. [70] 2557–5313 42/42 3 RT 

16AmFaHe_vda93 Auwera et al. [71] 2584–3364 4 99/4 99 5 RT 

93DcSaJo Dcunha et al. [72] 2589–2760 372/372 3 RT 

82RiBaRa Rinsland et al. [6] 3140–3399 1789/1788 21 RT and 433 K 

16AmFaHe_sarb95 Sarma et al. [73] 3171–3541 401/401 8 RT 

06LyPeMa Lyulin et al. [74] 3182–3327 167/167 13 RT 

16AmFaHe_man05 Mandin et al. [75] 3185–3355 288/288 5 RT 

16AmFaHe_sara95 Sarma et al. [76] 3230–3952 424/424 5 RT 

16AmFaHe_ber99 Bermejo et al. [77] 3358–3361 21/21 1 RT (3e) 

16AmFaHe_lyub07 Lyulin et al. [78] 3768–4208 668/668 8 RT 

16AmFaHe_gir06 Girard et al. [79] 3931–4009 91/91 10 RT 

16AmFaHe_dcu91 Dcuhna et al. [80] 3999–4143 251/251 6 RT 

72BaGhNa Baldacci et al. [81] 4423–4791 472/408 8 RT (3f) 

16AmFaHe_lyua07 Lyulin et al. [82] 4423–4786 4 40/4 40 8 RT 

16AmFaHe_lyu08 Lyulin et al. [83] 5051–5562 320/320 7 RT 

16AmFaHe_kep96 Keppler et al. [84] 5705–6862 1957/1957 30 RT 

17LyCa Lyulin and Campargue [23] 5852–8563 4 941/4 941 108 RT (3g) 

16AmFaHe_rob08 Robert et al. [85] 5885–6992 56 8/56 8 20 RT 

07TrMaDa Tran et al. [86] 6299–6854 546/546 13 RT (3h) 

16AmFaHe_lyu09 Lyulin et al. [87] 6300–6666 89/89 5 RT 

16KaNaVa Karhu et al. [88] 6386–6541 19/19 2 RT (3i) 

16AmFaHe_kou94 Kou et al. [89] 6439–6629 73/73 1 RT 

15TwCiSe Twagirayezu et al. [90] 6448–6564 135/135 2 RT 

02HaVa Hachtouki and Auwera [91] 644 8–66 85 271/271 4 RT 

77BaGhNa Baldacci et al. [92] 6460–6680 860/859 15 RT (3j) 

05EdBaMa Edwards et al. [93] 6472–6579 41/41 1 RT 

13ZoGiBa Zolot et al. [94] 6490–6609 37/37 1 RT 

00MoDuJa Moss et al. [95] 6502–6596 36/36 1 RT 

96NaLaAw Nakagawa et al. [96] 6502–6596 36/36 1 RT 

16AmFaHe_amy11 Amyay et al. [97] 6667–7868 2259/2256 79 RT (3k) 

15LyVaCa Lyulin et al. [98] 7001–7499 2471/2471 29 RT (3l) 

09JaLaMa Jacquemart et al. [99] 7043–7471 233/233 4 RT 

02VaElBr Auwera et al. [100] 7062–9877 626/626 11 RT (3m) 

16LyVaCa Lyulin et al. [101] 8283–8684 627/627 14 RT (3n) 

17BeLyHu Béguier et al. [102] 8994–9414 432/432 11 RT 

89HeHuVe Herman et al. [103] 9362–10413 657/657 14 RT (3o) 

93SaKa Sakai and Katayama [104] 12428–12538 91/73 1 RT (3p) 

03HeKeHu Herregodts et al. [105] 12582–12722 60/60 1 RT 

92SaKa Sakai and Katayama [106] 12904–13082 216/212 3 RT (3q) 

94SaSeKa Sakai et al. [107] 13629–13755 53/53 1 < RT (223K) (3r) 

Total 29–13755 37813/37206 
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i  
alled ‘gerade’ and labelled with a subscript g , and those whose

hase changes to opposite are called ‘ungerade’ and labelled u .

he ortho and para labels are defined based on the permuta-

ion, P , of the identical hydrogen atoms. For the para states

he corresponding rovibrational wavefunctions, �r-v , are symmet-

ic, i.e. P �r −v = (+1)�r −v , while for the ortho states they are

ntisymmetric, P �r −v = (−1)�r −v . The allowed combinations of
l  
hese labels are shown in Table 3 and explained in more detail be-

ow. 

The e / f labelling which has been adopted in this work

as originally introduced by Brown et al. [44] to eliminate

ssues relating to Plíva’s c / d labelling [45] and the s / a la-

elling of Winnewisser and Winnewisser [46] . For more detailed

nformation on the e / f parity doublets, see the section titled ‘ e / f

evels’ of Herman et al. [47] . In summary, an interaction known as
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Fig. 4. Para component of the spectroscopic network of 12 C 2 H 2 produced using Marvel input data. 
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� -doubling occurs in linear molecules, which splits the rotational, J ,

levels in certain vibrational states. The symmetry describing these

states is based on the total vibrational angular momentum quan-

tum number, K . There are, for example, two distinct states in the

2 ν4 band; one with K = 0 ( �+ 
g , (0 0 02 0 0 0 ) 0 ) and another with

K = 2 ( �g , (0 0 02 2 0 0 ) 2 ). In this case, the interaction with the ro-

tation leads to a splitting of the rovibrational levels in the K = 2

( �g ) sublevel ( � -doubling). The �e (corresponding to one of the

two bending modes) and �e (corresponding to one of the three

stretching modes) states repel each other, pushing �e to a lower

energy while �f is unaffected. For this reason the e state typically

lies below the f state, as bending occurs at a lower frequency than

stretching [47] . This effect depends on J(J + 1) and so becomes in-

creasingly important at higher rotational excitations. If a rovibra-

tional state has no rotational splitting (as is the case if � 4 = � 5 = 0 ,

but not if � 4 = 1 and � 5 = −1 ), the state is always labelled e and

there is no corresponding f state. 

Herman and Lievin [48] give an excellent description of the or-

tho and para states of acetylene; the treatment of the main iso-

topologue is summarised here. The hydrogen atoms are spin- 1 2 par-

ticles and therefore obey Fermi-Dirac statistics. The 12 C atoms have

zero nuclear spin and so do not need to be considered here. The

symmetry operation, P, describes a permutation of identical parti-

cles; when applied to the 12 C 2 H 2 molecule it implies permutation

of the two hydrogen atoms. For fermions the total wavefunction

must be antisymmetric upon such a transformation. The permuta-

tion symmetry of the ground electronic state is totally symmetric

upon interchange of identical atoms and so the electronic part of

the wavefunction can be ignored here. The symmetry of the nu-

clear spin part of the wavefunction is not usually specified, but
an easily be deduced from the remaining symmetry. If the rovi-

rational part of the wavefunction is antisymmetric under permu-

ation symmetry (resulting from a combination of g and - or u

nd +), then the nuclear spin state must be ortho , and if the rovi-

rational part of the wavefunction is symmetric ( g, + or u, −), then

he nuclear spin state must be para (see Table 3 ). 

It is important to distinguish the vibrational and rotational

ymmetries from the symmetry of the rovibrational states of �r-v .

or a linear molecule such as 12 C 2 H 2 both the rotational �r and

he vibrational �v contributions to �r-v should transform accord-

ng with the point group D ∞ h (M), spanning an infinite number

f irreducible representations such as �+ / −
g/u ( K = 0 ), 	+ / −

g/u ( K = 1 ),
+ / −
g/u ( K = 2 ) etc. However, after combining the rotational and vi-

rational parts into the rovibrational state �r-v , only the K = 0

tates (i.e. �+ 
g , �

−
g , �

+ 
u , �

−
u ) can lead to the total nuclear-rotation-

ibrational state obeying the proper statistics, as described above.

hese term symbols are the irreducible elements of the D 2 h (M)

roup [49] , which according to our labelling scheme correspond to

he four pairs: e ortho , e para , f ortho and f para . For example, the

ibrational state ν5 ( 	u ) can be combined with the J = 1 , K = 1

 	g ) rotational state to produce three rovibrational combinations

f �+ 
u , �

−
u and 	u ( D ∞ h point group). However, only the �−

u ,+ 
u states are allowed by nuclear-spin statistics. Here ν5 , 	u , K,

g are not rigorous quantum numbers/labels, while J = 1 , e / f and

rtho/para are. Thus, these two rovibrational states are assigned

0 0 0 0 0 1 1 ) 1 , J = 1 , e, para and (0 0 0 0 0 1 1 ) 1 , J = 1, f , ortho , respectively.

t should be also noted that generally neither K nor v 1 , . . . , v 5 are

ood quantum numbers. However, the quantity (−1) v 3 + v 5 is as it

efines the conserved u / g symmetry as follows: a state is ungerade
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Fig. 5. Alternative representations of the ortho (left) and para (right) component of the spectroscopic networks of 12 C 2 H 2 produced using Marvel input data. 

Fig. 6. Differences between the energy term values given in 17LyCa [23] and this 

work as a function of rotational angular momentum quantum number, J . 
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Fig. 7. Deviations, in cm 

−1 , between this work and 16AmFaHe [22] as a function 

of rotational angular momentum quantum number, J . Different colours represent 

different designations of e / f and u / g . 
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f (−1) v 3 + v 5 = −1 and gerade if (−1) v 3 + v 5 = 1 . The + / − labelling is

erived from e / f and J , as given in Table 2 . 

Throughout this paper we shall use the notations

(v 1 v 2 v 3 v 
� 4 
4 

v � 5 
5 

) K to describe vibrational states and (v 1 v 2 v 3 v 
� 4 
4 

v � 5 
5 

) K ,

, e / f , ortho/para to describe rovibrational states. The e and f

abelling combined with J and nuclear spin state ( ortho or para )

ives the rigorous designation of each state. Other quantum

umber labels are approximate but, besides representing the

nderlying physics, are necessary to uniquely distinguish each

tate. The symmetry labels of the vibrational states ( �+ / −
u/g , 	u / g ,

u / g , ...) have been added to the end of the output energy files

see Table 8 and supplementary material). 

.3. Selection rules 

The rigorous selection rules governing single-photon rotation-

ibration transitions for a symmetric linear molecule (molecular

ymmetry (MS) group D ∞ h (M)) are given by 

J = ±1 with e ↔ e or f ↔ f, (1) 

�J = 0 with e ↔ f (2) 
n  
 

′ + J ′′ � = 0 (3) 

 ↔ g (4) 

he first two equations here correspond to the standard selection

ule + ↔ − for the dipole transitions in terms of the parities. The

rtho states of 12 C 2 H 2 have the statistical weight g ns = 3 , while for

he para states g ns = 1 . 

. Experimental sources 

A large number of experimentally-determined rovibrational

ransition frequencies can be found in the literature for the main

sotopologue of acetylene, 12 C 2 H 2 . As part of this study we at-

empted to conduct a rigorous and comprehensive search for all

seable high-resolution spectroscopic data. This includes the tran-

ition frequency (in cm 

−1 ) and associated uncertainty, along with

uantum number assignments for both the upper and lower en-

rgy states. A unique reference label is assigned to each tran-

ition, which is required for Marvel input. This label indicates

he data source, table (or page) and line number that the tran-

ition originated from. The data source tag is based on the

otation employed by an IUPAC Task Group on water spectroscopy
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Table 6 

Data sources considered but not used in this work. 

Tag Reference Comments 

16AmFaHe_abb96 Temsamani et al. [108] 0 transitions in 16AmFaHe; data not available in original paper. 

16AmFaHe_eli98 Idrissi et al. [109] 0 transitions in 16AmFaHe; data not available in original paper. 

72Plivaa Plíva [110] : Energy levels only 

02MeYaVa Metsälä et al. [111] No suitable data 

01MeYaVa Metsälä et al. [112] No suitable data 

99SaPeHa Saarinen et al. [113] No suitable data 

97JuHa Jungner and Halonen [114] No suitable data 

93ZhHa Zhan and Halonen [115] No suitable data 

93ZhVaHa Zhan et al. [116] No suitable data 

91ZhVaKa Zhan et al. [117] No suitable data 

13SiMeVa Siltanen et al. [118] No suitable data 

83ScLeKl Scherer et al. [119] No assignments given 

Fig. 8. Deviations, in cm 

−1 , between this work and 16AmFaHe [22] as a function of 

the number of transitions that link to the energy level in our dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7 

Changes in labelling between 15LyVaCa [98] , 

17LyCa_FTS15 [23] and this work, in the form 

( v 1 v 2 v 3 v 4 � 4 v 5 � 5 ) K . See comment (3l) in the text. 

15LyVaCa 17LyVa_FTS15 This work 

(0204 2 1 −1 ) 1 ∗∗ (0113 1 0 0 ) 1 (0204 1 1 0 ) 1 

(0113 1 0 0 ) 1 (0204 0 1 1 ) 1 (0113 1 0 0 ) 1 

(1102 0 1 1 ) 1 (1102 0 1 1 ) 1 (1102 1 1 0 ) 1 

(1102 2 1 −1 ) 1 ∗∗ (0202 2 3 −1 ) 1 (1102 0 1 1 ) 1 

(1102 2 1 −1 ) 1 ∗ (1102 2 1 −1 ) 1 (1102 2 1 −1 ) 1 

b  

a  

n  

p  

n  

s  

t

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[37,50] with an adjustment discussed below. The associated un-

certainties were taken from the experimental data sources where

possible, though it was necessary to increase many of these in or-

der to achieve consistency with the same transition in alternative

data sources. As noted by Lyulin and Perevalov [25] , these sources

often provide overall uncertainties for the strongest lines in a vi-

brational band which may underestimate the uncertainty associ-

ated with some or all of the weaker, and especially of blended,

lines. 

61 sources of experimental data were considered. Two of the

data compilations mentioned in the introduction [22,23] contain

data from multiple other sources, some of which was not directly

available to us. Data taken from these compilations is given a tag

based on that used in the compilation with the original reference

given in Table 5 . After processing, 60 sources were used in the final

data set. The data from more recent papers is generally provided in

digital format, but some of the older papers had to be processed

through digitalisation software, or even manually entered in the

most extreme cases. After digitalisation the data was converted to

Marvel format; an example of the input file in this format is given

in Table 4 ; the full file can be found in the supplementary data of

this paper. 

Table 5 gives a summary of all the data sources used in

this work, along with the wavenumber range, number of tran-

sitions, number of vibrational bands, the approximate tempera-

ture of the experiment, and comments, which can be found in

Section 3.1 . Table 6 gives those data sources which were con-

sidered but not used, with comments on the reasons. The ref-

erence label given in these tables corresponds to the unique la-
els in the Marvel input files, given in the supplementary data

nd illustrated in the last column of Table 4 . As transitions do

ot occur between ortho and para states, they form two com-

letely separate components of the experimental spectroscopic

etwork, with no links between them. All input and output files

upplied in the supplementary data to this work are split into ei-

her ortho or para . 

.1. Comments on the experimental sources in Table 5 

(3a) 81HiKa [56] has two apparent misprints: in column 2 of

their Table 6, the R(19) line should be 780.2601 cm 

−1 and

not 790.2601 cm 

−1 , as confirmed by 01JaClMa [59] , and in

column 5 of their Table 4 the Q(3) line should be 728.9148

cm 

−1 not 729.9148 cm 

−1 , also confirmed by 01JaClMa [59] . 

(3b) 93WeBlNa_page14_l38 from 93WeBlNa [57] is not consis-

tent with other data sources. It was marked in the orig-

inal dataset as a transition that the authors did not in-

clude in their analysis and so has been removed from our

dataset. 

(3c) 50BeNi [60] was deemed too unreliable to use in the final

dataset: their data are directly contradicted by other sources.

(3d) Many of the transitions included from 16AmFaHe_amy09

[64] are not duplicated in any other source. While this

means they represent a valuable source of data, and have

thus been kept in the Marvel dataset, the fact that there

is no other experimental data to back them up means they

should be treated with some degree of caution. As stated in

the original paper, modelling such a high temperature re-

gion is a challenge. There are a small number of transitions

- 14 out of 3791 - that do not match those from other data

sources and have been removed from our final dataset. 

(3e) 16AmFaHe_ber98 [68] and 16AmFaHe_ber99 [77] are Raman

spectra and so the transitions do not follow the selection

rules detailed in Section 2.3 of this paper. 

(3f) 72BaGhNa [81] has a band labelled (0 013 1 0 0 ) 1 - (0 0 01 1 0 0 ) 1 

which is not consistent with other data sources. It was found

that the band labelled (0104 0 1 1 ) 1 - (0 0 01 1 0 0 ) 1 gave ener-

gies consistent with those labelled (0013 1 0 0 ) 1 - (0001 1 0 0 ) 1 
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Table 8 

Extract from the Marvel output file for the ortho transitions. The full file is supplied as part of the supplementary information to 

this paper. All energies and uncertainties are in units of cm 

−1 . The assignments are detailed in Table 1 . 

Assignment Energy Uncertainty NumTrans u/g Symmetry 

0 0 0 0 0 0 0 0 1 e ortho 2 .35329 0.0 0 0 03 204 g sigma_g_plus 

0 0 0 0 0 0 0 0 3 e ortho 14 .11952 0.0 0 0 02 289 g sigma_g_plus 

0 0 0 0 0 0 0 0 5 e ortho 35 .29793 0.0 0 0 02 306 g sigma_g_plus 

0 0 0 0 0 0 0 0 7 e ortho 65 .88710 0.0 0 0 02 298 g sigma_g_plus 

0 0 0 0 0 0 0 0 9 e ortho 105 .88501 0.0 0 0 02 306 g sigma_g_plus 

0 0 0 0 0 0 0 0 11 e ortho 155 .28899 0.0 0 0 02 306 g sigma_g_plus 

0 0 0 0 0 0 0 0 13 e ortho 214 .09576 0.0 0 0 02 306 g sigma_g_plus 

0 0 0 0 0 0 0 0 15 e ortho 282 .30144 0.0 0 0 02 310 g sigma_g_plus 

0 0 0 0 0 0 0 0 17 e ortho 359 .90150 0.0 0 0 02 294 g sigma_g_plus 

0 0 0 0 0 0 0 0 19 e ortho 446 .89078 0.0 0 0 03 282 g sigma_g_plus 

0 0 0 0 0 0 0 0 21 e ortho 543 .26353 0.0 0 0 02 274 g sigma_g_plus 

0 0 0 1 1 0 0 1 1 e ortho 614 .04436 0.0 0 018 98 g pi_g 

0 0 0 1 1 0 0 1 2 f ortho 618 .77696 0.0 0 013 133 g pi_g 
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in other data sources (16AmFaHe_lyua07, 16AmFaHe_lyu08).

Bands including (0104 0 1 1 ) 1 are not present in other data

sources. We have swapped the labelling of these bands

accordingly. All other bands from this dataset were in-

cluded, with the exception of the single transition labelled

72BaGhNa_table2_c2_l32, which was not consistent with

other datasets. 

(3g) 17LyCa [23] provides a collection of data recorded in Greno-

ble using cavity ring down spectroscopy (CRDS) from sev-

eral papers. 15LyVaCa (FTS15 in the notation of 17LyCa) [98] ,

16LyVaCa (FTS16) [101] and 17BeLyHu (FTS17) [102] were all

already included as separate files in our dataset and so were

removed from the 17LyCa [23] dataset. The remaining data,

CRDS13 [120] , CRDS14 [121] and CRDS16 [122] are all in-

cluded in the final dataset with the tag ‘17LyCa’. See also

comment (3l). 

(3h) 07TrMaDa [86] contains a band labelled 2 ν2 + (ν4 + 3 ν5 ) 
0 + .

� 4 and � 5 were assigned in our dataset as +1 and -1 re-

spectively, to be consistent with the labelling of 16Am-

FaHe_kep96. 

(3i) Full data for 16KaNaVa [88] was provided in digital format

by the corresponding author (private communication, Juho

Karhu). 

(3j) 77BaGhNa_table3_l205 of 77BaGhNa [92] is not compatible

with the same transition in two other sources. 

(3k) 16AmFaHe_amy11 [97] includes a band ((10 0 0 0 6 6 ) 6 -

(0 0 0 0 0 0 0 ) 0 ) which has transitions from J = 0 to J =
10 , 11 , 12 . These are not physical and so have been removed

from the dataset. There is one other transition which we

removed as we found it to be inconsistent with the other

datasets. 

(3l) There has been some changes in the authors’ approach to

labelling levels between 15LyVaCa [98] and 17LyCa [23] , see

comment (3g) (Alain Campargue, private communication).

This was partly to allow all bands to have unique labelling,

as duplicate labels were provided in 15LyVaCa as indicated

by ∗∗ or ∗ superscripts. We have relabelled these bands to fit

with other data sources, for example 16AmFaHe_amy11 [97] .

We have been informed by the authors of 17LyCa that they

are currently making amendments to their published dataset

(Alain Campargue, private communication). Table 7 sum-

marises the changes in labelling between 15LyVaCa, the cur-

rent version of 17LyCa_FTS15 (see supplementary data of

Lyulin and Campargue [23] ) and this work. 

(3m) 02VaElBr [100] is missing one band labelling in the foot-

note to their Table 4. The missing label for the penultimate

level is I = ( v 1 v 2 v 3 v 4 
l 4 v 5 

l 5 ) K = (0020 0 1 1 ) 1 . Full data for this
 

source was provided in digital format by the corresponding

author (Jean Vander Auwera, private communication). 

(3n) 16LyVaCa [101] has duplicate lines in the (1110 0 0 0 ) 0 band.

Those which are inconsistent with other sources were

removed and thus not included in the final data set for

the MARVEL analysis. It is possible that they should be re-

assigned. 

(3o) The assignments given for the band labelled (0122 0 2 0 ) 0 -

(0 0 0 0 0 0 0 ) 0 in 89HeHuVe [103] require the upper state to

have the parity of an f -level, which is unphysical if both

� 4 = 0 and � 5 = 0. There can be no e / f splitting in this case. We

assumed this upper state should be labelled (0122 2 2 −2 ) 0 .

We have amended and included these reassigned transitions

in our dataset. 

(3p) Table 1 of 93SaKa [104] has duplicates for the e ↔ e transi-

tions in the (2021 1 0 0 ) 1 - (0 0 0 0 0 1 1 ) 1 vibrational band. Those

which are inconsistent with other sources were removed

and thus not included in the final data set. 

(3q) 92SaKa [106] contains some duplicate lines which have

been assigned identical quantum numbers. Those transitions

which are inconsistent with other sources were removed

and thus not included in the final data set. 

(3r) 94SaSeKa [107] gives two tables of data but only one is as-

signed with vibrational quantum numbers, so data from the

other table were not considered in this study. 

.2. General comments 

A number of general issues had to be dealt with before consis-

ent rovibrational data could be obtained. 

(1) 16AmFaHe [22] released a collation and analysis of exper-

imental data in the middle of our collation and analysis

stage. The entire database was formatted into Marvel for-

mat so it could subsequently be run through the software

and combined with the other experimental sources refer-

enced in this paper. Some of the experimental sources fea-

tured in the 16AmFaHe database paper had already been

collated and formatted to Marvel format prior to its pub-

lication. These are 03JaMaDa [65] , 91KaHeDi [52] , 06LyPeMa

[74] , 07LyPeGu [82] , 82RiBaRa [6] , 02VaElBr [100] and

00MoDuJa [95] . We used a Marvel format version of 16Am-

FaHe’s compilation to compare to our data, as a further

check to validate data had been digitised and formatted cor-

rectly; the versions included in the present study come from

the original datasets for these papers. A few of the sources

that were cited in 16AmFaHe were not included in our fi-

nal dataset. There were 0 transitions in 16AmFaHe from
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Table 9 

Vibrational energy levels (cm 

−1 ) from Marvel analysis. 

(v 1 v 2 v 3 v � 4 4 
v � 5 

5 
) K e / f State Marvel Energy (cm 

−1 ) Uncertainty (cm 

−1 ) NumTrans 

(0 0 0 0 0 0 0 ) 0 e para 0 .0 0 0 0 0 0 0.0 0 0 050 85 

(0 0 02 0 0 0 ) 0 e para 1230 .390303 0.0 0 0559 11 

(0 0 01 1 1 −1 ) 0 e ortho 1328 .073466 0.0 0 0319 19 

(0 0 01 1 1 −1 ) 0 f para 1340 .550679 0.001551 9 

(0 0 0 0 0 2 0 ) 0 e para 1449 .112363 0.001189 10 

(0100 0 0 0 ) 0 e para 1974 .316617 0.0 060 0 0 1 

(0 0 03 1 1 −1 ) 0 e ortho 2560 .594937 0.0 020 0 0 3 

(0 0 02 2 2 −2 ) 0 e para 2648 .014468 0.0 040 0 0 1 

(0 0 01 1 3 −1 ) 0 e ortho 2757 .797907 0.001897 3 

(0 0 0 0 0 4 0 ) 0 e para 2880 .220077 0.0 040 0 0 1 

(0101 1 1 −1 ) 0 e ortho 3281 .899025 0.001744 5 

(0010 0 0 0 ) 0 e ortho 3294 .839579 0.001903 4 

(0101 1 1 −1 ) 0 f para 3300 .635590 0.007682 2 

(10 0 0 0 0 0 ) 0 e para 3372 .838987 0.0160 0 0 1 

(0103 1 1 −1 ) 0 e ortho 4488 .838166 0.0 0120 0 2 

(0012 0 0 0 ) 0 e ortho 4508 .012219 0.002666 4 

(0102 2 2 −2 ) 0 f ortho 4599 .774669 0.003905 2 

(0011 1 1 −1 ) 0 e para 4609 .341046 0.005902 3 

(0011 1 1 −1 ) 0 f ortho 4617 .925870 0.005083 4 

(1001 1 1 −1 ) 0 e ortho 4673 .631058 0.001789 3 

(1001 1 1 −1 ) 0 f para 4688 .846488 0.011400 1 

(0101 1 3 −1 ) 0 e ortho 4710 .739822 0.0180 0 0 1 

(0010 0 2 0 ) 0 e ortho 4727 .069907 0.001193 3 

(10 0 0 0 2 0 ) 0 e para 4800 .137287 0.0 0 060 0 1 

(0201 1 1 −1 ) 0 e ortho 5230 .229286 0.010 0 0 0 1 

(0110 0 0 0 ) 0 e ortho 5260 .021842 0.003328 2 

(0103 1 3 −1 ) 0 e ortho 5893 .260496 0.010 0 0 0 1 

(1001 1 3 −1 ) 0 e ortho 6079 .693064 0.003714 2 

(0010 0 4 0 ) 0 e ortho 6141 .127536 0.010 0 0 0 1 

(0112 0 0 0 ) 0 e ortho 6449 .106486 0.0 060 0 0 1 

(1102 0 0 0 ) 0 e para 6513 .991447 0.0 080 0 0 1 

(1010 0 0 0 ) 0 e ortho 6556 .464783 0.0 0 010 0 4 

(1101 1 1 −1 ) 0 e ortho 6623 .139603 0.011915 2 

(0110 0 2 0 ) 0 e ortho 6690 .577636 0.0120 0 0 1 

(20 0 0 0 0 0 ) 0 e para 6709 .021187 0.003714 2 

(1100 0 2 0 ) 0 e para 6759 .239077 0.010 0 0 0 1 

(0114 0 0 0 ) 0 e ortho 7665 .441780 0.010 0 0 0 1 

(0022 0 0 0 ) 0 e para 7686 .078947 0.0 020 0 0 1 

(0204 2 2 −2 ) 0 e para 7707 .277687 0.0 040 0 0 1 

(1012 0 0 0 ) 0 e ortho 7732 .793472 0.005291 4 

(0203 3 3 −3 ) 0 e ortho 7787 .324394 0.010 0 0 0 1 

(0021 1 1 −1 ) 0 e ortho 7805 .004672 0.001876 3 

(1103 1 1 −1 ) 0 e ortho 7816 .006736 0.010 0 0 0 1 

(1011 1 1 −1 ) 0 f ortho 7853 .277113 0.0120 0 0 1 

(1010 0 2 0 ) 0 e ortho 7961 .820133 0.007660 3 

(2001 1 1 −1 ) 0 e ortho 7994 .394918 0.002578 2 

(2001 1 1 −1 ) 0 f para 8001 .204086 0.009877 2 

(20 0 0 0 2 0 ) 0 e para 8114 .362883 0.003705 3 

(1100 0 4 0 ) 0 e para 8164 .554028 0.0 080 0 0 1 

(1110 0 0 0 ) 0 e ortho 8512 .056241 0.0 0 0429 3 

(1201 1 1 −1 ) 0 e ortho 8556 .589655 0.010 0 0 0 1 

(1201 1 1 −1 ) 0 f para 8570 .322888 0.010 0 0 0 1 

(2100 0 0 0 ) 0 e para 8661 .149087 0.010 0 0 0 1 

(0300 0 4 0 ) 0 e para 8739 .814487 0.010 0 0 0 1 

(0310 0 0 0 ) 0 e ortho 9151 .727686 0.010 0 0 0 1 

(0030 0 0 0 ) 0 e ortho 9639 .863579 0.015435 2 

(1112 0 0 0 ) 0 e ortho 9668 .161468 0.015435 2 

(0122 2 2 −2 ) 0 f ortho 9741 .622286 0.030 0 0 0 1 

(0121 1 1 −1 ) 0 e ortho 9744 .541486 0.030 0 0 0 1 

(2010 0 0 0 ) 0 e ortho 9835 .173105 0.015435 2 

(1030 0 0 0 ) 0 e ortho 12675 .677286 0.0 010 0 0 1 

(3010 0 0 0 ) 0 e ortho 13033 .293786 0.010 0 0 0 1 

(2210 0 0 0 ) 0 e ortho 13713 .845686 0.0 060 0 0 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

[108] (abb96), [109] (eli98) or [54] (drou11). The data for

Drouin and Yu [54] were taken from the original paper (see

11DrYu in Table 5 ), but there was no data obviously available

in the original papers for the other two sources. We have

tried to keep the quantum number labelling consistent with

that of 16AmFaHe as much as possible (see the next com-

ment for an exception). Some other sources were labelled
 

in order to make them consistent, in particular those cases

were � 4 and � 5 were not defined in the original source. 

(2) Many of the � 4 and � 5 assignments were inconsis-

tent between different sources, were not given in the

original data (often only K = | � 4 + � 5 | is given) or

were inconsistent between data in the same dataset.

Examples include the bands with upper energies labelled

(v 1 v 2 v 3 v 
� 4 v � 5 ) K = (0 0 02 ∗1 ∗) 1 , (1102 ∗1 ∗) 1 or (0102 ∗1 ∗) 1 in

4 5 
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Table 10 

Comparison of pure rotational levels with those of 16AmFaHe [22] and 17LyPe [24] . 

J This work Uncertainty 16AmFaHe Difference 17LyPe Difference State 

1 2 .35329 0.0 0 0 03 2 .353286417 0 2 .3533 0 .0 0 0 01 ortho 

2 7 .05982 0.0 0 0 03 7 .05982021 0 7 .0598 −0 .0 0 0 02 para 

3 14 .11952 0.0 0 0 02 14 .119523294 0 .0 0 0 01 14 .1195 −0 .0 0 0 02 ortho 

4 23 .53228 0.0 0 0 03 23 .532278547 0 23 .5322 −0 .0 0 0 08 para 

5 35 .29793 0.0 0 0 02 35 .297929811 0 35 .2978 −0 .0 0 013 ortho 

6 49 .41629 0.0 0 0 03 49 .416281896 −0 .0 0 0 01 49 .4161 −0 .0 0 019 para 

7 65 .88709 0.0 0 0 02 65 .887100587 0 65 .8869 −0 .0 0 02 ortho 

8 84 .71012 0.0 0 0 02 84 .710112648 −0 .0 0 0 01 84 .7098 −0 .0 0 032 para 

9 105 .88501 0.0 0 0 02 105 .885005832 0 105 .8846 −0 .0 0 041 ortho 

10 129 .41144 0.0 0 0 03 129 .411428888 −0 .0 0 0 01 129 .411 −0 .0 0 044 para 

11 155 .28899 0.0 0 0 02 155 .28899157 0 .0 0 0 01 155 .2885 −0 .0 0 049 ortho 

12 183 .51727 0.0 0 0 03 183 .517264652 −0 .0 0 0 01 183 .5167 −0 .0 0 057 para 

13 214 .09576 0.0 0 0 02 214 .095779933 0 .0 0 0 02 214 .0951 −0 .0 0 066 ortho 

14 247 .02403 0.0 0 0 03 247 .024030258 0 247 .0233 −0 .0 0 073 para 

15 282 .30144 0.0 0 0 02 282 .301469525 0 .0 0 0 03 282 .3007 −0 .0 0 074 ortho 

16 319 .92751 0.0 0 0 03 319 .927512702 0 319 .9266 −0 .0 0 091 para 

17 359 .90149 0.0 0 0 02 359 .901535847 0 .0 0 0 04 359 .9006 −0 .0 0 09 ortho 

18 402 .22287 0.0 0 0 03 402 .22287612 0 .0 0 0 01 402 .2219 −0 .0 0 097 para 

19 446 .89078 0.0 0 0 03 446 .890831804 0 .0 0 0 06 446 .8898 −0 .0 0 098 ortho 

20 493 .90464 0.0 0 0 03 493 .904662324 0 .0 0 0 02 493 .9036 −0 .00104 para 

21 543 .26353 0.0 0 0 02 543 .263588267 0 .0 0 0 06 543 .2625 −0 .00103 ortho 

22 594 .96668 0.0 0 0 04 594 .966791406 0 .0 0 011 594 .9657 −0 .0 0 098 para 

23 649 .01328 0.0 0 0 03 649 .013414717 0 .0 0 014 649 .0123 −0 .0 0 098 ortho 

24 705 .40237 0.0 0 0 04 705 .402562408 0 .0 0 019 705 .4015 −0 .0 0 087 para 

25 764 .13315 0.0 0 0 03 764 .133299944 0 .0 0 015 764 .1322 −0 .0 0 095 ortho 

26 825 .20439 0.0 0 0 04 825 .204654067 0 .0 0 026 825 .2037 −0 .0 0 069 para 

27 888 .61531 0.0 0 0 03 888 .615612828 0 .0 0 031 888 .6147 −0 .0 0 061 ortho 

28 954 .36496 0.0 0 0 05 954 .365125617 0 .0 0 017 954 .3642 −0 .0 0 076 para 

29 1022 .45167 0.0 0 0 03 1022 .452103183 0 .0 0 044 1022 .4513 −0 .0 0 037 ortho 

30 1092 .87513 0.0 0 0 05 1092 .875417676 0 .0 0 029 1092 .8747 −0 .0 0 043 para 

31 1165 .63343 0.0 0 0 04 1165 .633902667 0 .0 0 048 1165 .6333 −0 .0 0 013 ortho 

32 1240 .72592 0.0 0 017 1240 .726353188 0 .0 0 043 1240 .7259 −0 .0 0 0 02 para 

33 1318 .15099 0.0 0 011 1318 .151525765 0 .0 0 054 1318 .1512 0 .0 0 021 ortho 

34 1397 .90769 0.0 0 023 1397 .908138445 0 .0 0 045 1397 .908 0 .0 0 031 para 

35 1479 .99435 0.0 0 0 07 1479 .994870843 0 .0 0 053 1479 .9949 0 .0 0 055 ortho 

36 1564 .40979 0.0 0 026 1564 .410364167 0 .0 0 057 1564 .4105 0 .0 0 071 para 

37 1651 .15189 0.0 0 017 1651 .153221265 0 .00134 1651 .1535 0 .00161 ortho 

38 1740 .22038 0.0 0 037 1740 .222006657 0 .00163 1740 .2225 0 .00212 para 

39 1831 .61393 0.0 0 026 1831 .615246582 0 .00132 1831 .6159 0 .00197 ortho 

40 1925 .33058 0.0 0 074 1925 .331429031 0 .0 0 085 1925 .3322 0 .00162 para 

41 2021 .36757 0.0 0 043 2021 .369003793 0 .00144 2021 .3699 0 .00233 ortho 

42 2119 .72439 0.0 0 06 2119 .726382499 0 .00199 2119 .7273 0 .00291 para 

43 2220 .40059 0.0 0 057 2220 .401938666 0 .00134 2220 .4029 0 .0023 ortho 

44 2323 .39201 0.00127 2323 .394007739 0 .002 2323 .395 0 .00299 para 

45 2428 .69912 0.00135 2428 .70088714 0 .00177 2428 .7018 0 .00268 ortho 

46 2536 .31702 0.00103 2536 .320836316 0 .00382 2536 .3217 0 .00468 para 

47 2646 .25026 0.00128 2646 .252076785 0 .00182 2646 .2527 0 .00244 ortho 

48 2758 .49217 0.00142 2758 .492792187 0 .0 0 062 2758 .4931 0 .0 0 093 para 

49 2873 .03874 0.00194 2873 .041128336 0 .00239 2873 .0411 0 .00236 ortho 

50 2989 .89046 0.00175 2989 .895193269 0 .00473 2989 .8947 0 .00424 para 

51 3109 .04649 0.00148 3109 .0530573 0 .00657 3109 .0519 0 .00541 ortho 

52 3230 .50478 0.00124 3230 .512753073 0 .00797 3230 .5108 0 .00602 para 

53 3354 .26378 0.00224 3354 .272275619 0 .0085 3354 .2694 0 .00562 ortho 

54 3480 .32661 0.0025 3480 .329582411 0 .00297 3480 .3256 −0 .00101 para 

55 3608 .67187 0.0025 3608 .682593419 0 .01073 3608 .6772 0 .00533 ortho 

56 3739 .32523 0.00118 3739 .329191172 0 .00396 3739 .3223 −0 .00293 para 

57 3872 .25528 0.00208 3872 .267220814 0 .01193 3872 .2585 0 .0032 ortho 

58 4007 .49264 0.0017 4007 .4 944 90165 0 .00185 4007 .4836 −0 .00904 para 

59 4144 .99542 0.00118 4145 .008769784 0 .01335 4144 .9955 0 .0 0 0 08 ortho 

60 4284 .80143 0.00181 4284 .807793029 0 .00636 4284 .7918 −0 .00963 para 

61 4426 .87718 0.00154 4426 .889256124 0 .01206 4426 .8701 −0 .0071 ortho 

62 4571 .24409 0.00142 4571 .25081822 0 .00673 4571 .2281 −0 .01599 para 

63 4717 .87442 0.00142 4717 .890101462 0 .01569 4717 .8635 −0 .01092 ortho 

64 4866 .79028 0.00232 4866 .804691055 0 .01441 4866 .7736 −0 .01668 para 

65 5017 .97095 0.00168 5017 .992135336 0 .02119 5017 .9561 −0 .01485 ortho 

66 5171 .43923 0.00366 5171 .449945837 0 .01072 5171 .4085 −0 .03073 para 

67 5327 .14526 0.00195 5327 .175597358 0 .03034 5327 .128 −0 .01726 ortho 

69 5645 .38676 0.003 5645 .420139428 0 .03338 5645 .3585 −0 .02826 ortho 
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16AmFaHe. Using simple combination differences, with the

known lower value and given transition wavenumber, more

than one value was found for the upper energy. We assume

this duplication of quantum numbers for different states

is due to the different method of analysis used in 16Am-

FaHe, which does not require a completely unique set. For

example, for the upper level (1102 2 1 −1 ) 1 , J = 2, e , there are

two transitions which give as upper energy level of 7212.93

cm 

−1 (from 16AmFaHe_kep96) and three that give 7235.29

cm 

−1 (from 16AmFaHe_vda02 and 16AmFaHe_rob08). These

same two energies can be found in multiple other sources

(07TrMaDa, 15LyVaCa, 77BaGhNa, 02VaElBr), but the � 4 and

� 5 assignment was inconsistent for states of the same upper

energy. The decision was made to batch them together

and assign the first energy level (7212.94 cm 

−1 in this

example) as (1102 2 1 −1 ) 1 and the second (7235.29 cm 

−1 in

this example) as (1102 0 1 1 ) 1 . The same logic was applied to

other bands with K = | � 4 + � 5 | = 1. 

(3) The e / f notation (see Section 2.2 ) was mostly specified in ex-

perimental papers, but some required additional investiga-

tion in order to assign them in such a way as to be consis-

tent with other papers. The c/d notation in [45] , for example,

is analogous to the e / f notation used in this work. 

(4) All transitions which were considered but not processed in

the final dataset are labelled with _ct at the end of the ref-

erence and have a minus sign in front of the transition fre-

quency, at the start of the file. Marvel software ignores any

line with a negative wavenumber. 

3.3. Other comments 

The following are sources of the 12 C 2 H 2 data in the HI-

TRAN database ( [66,123–125] ): 16AmFaHe_gom09 [62] , 16Am-

FaHe_gom10 [61] , 96NaLaAw [96] , 05EdBaMa [93] , 16Am-

FaHe_lyua07 [82] , 16AmFaHe_jac07 [69] , 16AmFaHe_jac09 [99] ,

00Vander [63] , 02HaVa [91] , 03JaMaDab [66] , 16AmFaHe_kab91

[52] , 72Pliva [45] , 03JaMaDa [65] , 82RiBaRa [6] , and 16Am-

FaHe_vda93 [71] . 

4. Results 

The MARVEL website ( http://kkrk.chem.elte.hu/marvelonline/

marvel _ full.php ) has a version of Marvel which can be run on-

line. The variable NQN (number of quantum numbers) is 11 in the

case of acetylene, given in Table 1 . These quantum numbers are re-

quired for both the lower and upper levels, as illustrated in Table 4 .

All energies are measured from the zero point energy (ZPE).

This is the energy of the ground rovibrational state, which is given

a relative energy of zero and is included in the para set of energy

levels. The ortho set of energies therefore needs a ‘magic number’

to be added to all the Marvel ortho -symmetry energies. Here the

magic number was taken as the ground vibrational (0 0 0 0 0 0 0 ) 0 , J =
1 state of 16AmFaHe [22] who determined the value of 2.3532864

cm 

−1 , see Table 10 below. The output for the ortho energies in the

supplementary data, and the extract of the output file in Table 8 ,

all have this magic number added. The para component of the

spectroscopic network does not require a magic number as it con-

tains the ground rovibrational level, (0 0 0 0 0 0 0 ) 0 , J = 0 . There are

a small number (284 for ortho and 119 for para ) of energy levels

which are not joined to the two principal components (PCs) of the

network. If more experimental transitions became available in the

future it would be possible to link these to the PCs. 

A total of 37,813 transitions were collated and considered

(20,717 ortho and 17,096 para ) from the data sources detailed in

Section 3 . Of those 607 were found to be inconsistent with oth-

ers (353 ortho and 254 para ) and thus removed from the final data
et, leaving a total of 37,206 transitions used as input into Marvel

20,364 ortho and 16,842 para ). A plot of energy as a function of

otational quantum number, J , was made for each vibrational band

s a check that quantum numbers had been assigned consistently.

igs. 1 and 2 show this for each vibrational band, for the ortho and

ara states respectively. Figs. 3 and 4 illustrate the ortho and para

pectroscopic networks, respectively. The nodes are energy levels

nd the edges the transitions between them. Each consists of a

arge main network with a series of smaller networks currently

nattached. Different algorithms can be used to present the experi-

ental spectroscopic networks of 12 C 2 H 2 ; Fig. 5 , for example, gives

lternative representations of the structure. They highlight the in-

ricate relationships between different energy levels and illustrate

ow the variety of sources collated in this work link together. We

ote that the inclusion of transitions intensities as weights in the

pectroscopic network can aid in the determination of transitions

hich should preferentially be investigated in new experiments

28] . 

Table 9 gives the vibrational ( J = 0) energies resulting from the

arvel analysis, with associated uncertainty, vibrational assign-

ent and the number of transitions (NumTrans) which were linked

o the particular energy level. The higher the number of transitions

he more certainty can be given to the energy value. See comment

3o) of Section 3.1 relating to the band (0122 2 2 −2 ) 0 which may not

ave the correct assignment. 

. Comparison to other derived energy levels 

Table 10 compares our rotational energy levels for the vibra-

ional ground state, which are determined up to J = 69 , with those

btained by 16AmFaHe [22] from an effective Hamiltonian fit to

he observed data. In general the agreement is excellent. However,

or the highest few levels with J ≥ 55 we find differences which

re significantly larger than our uncertainties; our levels are sys-

ematically below those of 16AmFaHe. This suggests that the effec-

ive Hamiltonian treatment used by 16AmFaHe becomes unreliable

or these high J levels. It should be noted that the data relating

o these highly excited levels originate from 16AmFaHe_amy9, a

igh-temperature experiment which has not been reproduced else-

here; see comment (3d), Section 3.1 . It is interesting to note that

 further comparison with rotational energies extrapolated as part

f 17LyPe’s ASD-10 0 0 spectroscopic databank [24] , also given in

able 10 , yields differences of approximately the same magnitude

ut, in contrast, consistently lower than our work. 

The supplementary data from 17LyCa [23] contains lower en-

rgy levels, frequency and assignments, from which upper energy

evels can be calculated. Fig. 6 gives the differences between the

nergies given in 17LyCa and this work as a function of J . The

ast majority are within 0.005 cm 

−1 . Note that the difference in

abelling of some bands has been taken into account when com-

arisons are made (see comment (3l) in Section 3.1 and comment

2) in Section 3.2 ). 

The energy levels given as supplementary data in annex 5 of

6AmFaHe [22] are separated into polyads which are characterised

y a small number of quantum numbers: N rm v = 5 v 1 + 3 v 2 + 5 v 3 +
 4 + v 5 , J, e / f symmetry and u / g symmetry. As there are more than

ne state defined by these quantum numbers, the only compari-

on that was possible to make was to match these and find the

losest energy value within these bounds. As such, we cannot be

ertain that bands have been matched correctly. 17LyCa compared

hat they could against 16AmFaHe’s data but also could not find

 reliable way to determine unambiguously which energy of each

olyad block corresponds to their energy levels. Fig. 7 gives the dif-

erence between the energies in this work and those matched with

6AmFaHe as a function of rotational angular momentum quan-

um number, J . 6160 out of the 11154 energies differ by less than

http://kkrk.chem.elte.hu/marvelonline/marvel_full.php
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.01 cm 

−1 . However, this leaves 4994 energies with a difference

f higher than 0.01 cm 

−1 . 2176 of these energies also appear in

7LyCa, so a comparison could be made between the three. Only 7

f the energies in the 17LyCa dataset are closer to 16AmFaHe than

his work, and of those all are within 0.02 cm 

−1 with this work. 

It should be noted, however, that the differences between this

ork and 16AmFaHe are largest for those energy levels with low

alues of NumTrans (the number of transitions that link the en-

rgy state to other energies within the dataset); see Fig. 8 . The

ast majority of energy levels which only have one transition are

ot in the 17LyCa dataset. Many of these transitions came from the

ata source 16AmFaHe_amy09; see comment (3d) in Section 3.1 .

t would be of use to have more experimental data on transitions

o these levels in order to confirm their validity. The entire band

(0122 2 2 −2 ) 0 has differences of over 900 cm 

-1 in comparison to

he matched values in 16AmFaHe. This indicates that this band has

een misassigned (see comment (3o) in Section 3.1 ). We are un-

ertain currently as what it should be reassigned to. We have ex-

luded this band from Figs. 7 and 8 . 

It should be made clear, as mentioned above, that those energy

evels present in the input data which are only linked to the main

rincipal components of the spectroscopic network by one tran-

ition should be treated with caution; this number is given as a

arameter in the third to last column of the output files included

n the supplementary data. The number of transitions determining

n energy level can be used, along with the uncertainties, as an

ndication of the reliability of each energy level. Note, finally, that

arvel only processes data given as input; it does not extrapolate

o higher excitations. 

. Conclusions 

A total of 37813 measured experimental transitions from 61

ublications have been considered in this work. From this 6013

rtho and 5200 para energy levels have been determined using

he Measured Active Rotational-Vibrational Energy Levels ( Mar-

el ) technique. These results have been compared with alterna-

ive compilations based on the use of effective Hamiltonians. An

b initio high temperature linelist for acetylene is in preparation as

art of the ExoMol project [126] , for which this data will be used

n the process of validation of theoretical calculations. 

A significant part of this work was performed by pupils from

ighams Park School in London, as part of a project known as OR-

YTS (Original Research By Young Twinkle Scientists). The Mar-

el study of TiO [33] was also performed as part of the ORBYTS

roject and further studies on other key molecules will be pub-

ished in due course. A paper discussing our experiences of per-

orming original research in collaboration with school children will

e published elsewhere [127] . 
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