677 research outputs found

    On the flow map for 2D Euler equations with unbounded vorticity

    Full text link
    In Part I, we construct a class of examples of initial velocities for which the unique solution to the Euler equations in the plane has an associated flow map that lies in no Holder space of positive exponent for any positive time. In Part II, we explore inverse problems that arise in attempting to construct an example of an initial velocity producing an arbitrarily poor modulus of continuity of the flow map.Comment: http://iopscience.iop.org/0951-7715/24/9/013/ for published versio

    A New Method for Laminar Boundary Layer Transition Visualization in Flight: Color Changes in Liquid Crystal Coatings

    Get PDF
    The visualization of laminar to turbulent boundary layer transition plays an important role in flight and wind tunnel aerodynamic testing of aircraft wing and body surfaces. Visualization can help provide a more complete understanding of both transition location as well as transition modes; without visualization, the transition process can be very difficult to understand. In the past, the most valuable transition visualization methods for fight applications included sublimating chemicals and oil flows. Each method has advantages and limitations. In particular, sublimating chemicals are impractical to use in subsonic applications much above 20,000 feet because of the greatly reduced rates of sublimation at lower temperatures (less than -4 degrees Fahrenheit). Both oil flow and sublimating chemicals have the disadvantage of providing only one good data point per flight. Thus, for many important flight conditions, transition visualization has not been readily available. This paper discusses a new method for visualizing transition in fight by the use of liquid crystals. The new method overcomes the limitations of past techniques, and provides transition visualization capability throughout almost the entire altitude and speed ranges of virtually all subsonic aircraft flight envelopes. The method also has wide applicability for supersonic transition visualization in flight and for general use in wind tunnel research over wide subsonic and supersonic speed ranges

    Pamela: development of the RF system for a non-relativistic non-scaling FFAG

    Get PDF
    The PAMELA project(Particle Accelerator For MEdical Applications) currently consists of the design of a particle therapy facility. The project, which is in the design phase, contains Non-Scaling FFAG, particle accelerator capable of rapid beam acceleration, giving a pulse repetition rate of 1kHz, far beyond that of a conventional synchrotron. To realise the repetition rate, a key component of the accelerator is the rf accelerating system. The combination of a high energy gain per turn and a high repetition rate is a significant challenge. In this paper, options for the rf system of the proton ring and the status of development are presented

    Working time flexibility components and working time regimes in Europe: using company-level data across 21 countries

    Get PDF
    Working time ?exibility comprises a wide variety of arrangements, from part-time, overtime, to long-term leaves. Theoretical approaches to grouping these arrangements have been developed, but empirical underpinnings are rare. This article investigates the bundles that can be found for various ?exible working time arrangements, using the Establishment Survey on Working Time and Work–Life Balance, 2004/2005, covering 21 EU member states and 13 industries. The results from the factor analyses con?rmed that working time arrangements can be grouped into two bundles, one for the employee-centred arrangements and second for the employer-centred arrangements, and that these two bundles are separate dimensions.Wealso tested the stability of the factor analysisoutcome, showing that although we ?nd some deviations from the pan-Europe and pan-industry outcome, the naming of the components as ?exibility for employees and ?exibility for employers can be considered rather stable. Lastly, we ?nd three country clusters for the 21 European countries using the bundle approach. The ?rst group includes the Northern European countries along side Poland and Czech Republic, the second group the continental European countries with UK and Ireland, and lastly, the southern European countries with Hungary and Slovenia

    Accelerator system for the PRISM based muon to electron conversion experiment

    Full text link
    The next generation of lepton flavor violation experiments need high intensity and high quality muon beams. Production of such beams requires sending a short, high intensity proton pulse to the pion production target, capturing pions and collecting the resulting muons in the large acceptance transport system. The substantial increase of beam quality can be obtained by applying the RF phase rotation on the muon beam in the dedicated FFAG ring, which was proposed for the PRISM project.This allows to reduce the momentum spread of the beam and to purify from the unwanted components like pions or secondary protons. A PRISM Task Force is addressing the accelerator and detector issues that need to be solved in order to realize the PRISM experiment. The parameters of the required proton beam, the principles of the PRISM experiment and the baseline FFAG design are introduced. The spectrum of alternative designs for the PRISM FFAG ring are shown. Progress on ring main systems like injection and RF are presented. The current status of the study and its future directions are discussed.Comment: Studies performed within the PRISM Task Force initiativ

    A Kato type Theorem for the inviscid limit of the Navier-Stokes equations with a moving rigid body

    Full text link
    The issue of the inviscid limit for the incompressible Navier-Stokes equations when a no-slip condition is prescribed on the boundary is a famous open problem. A result by Tosio Kato says that convergence to the Euler equations holds true in the energy space if and only if the energy dissipation rate of the viscous flow in a boundary layer of width proportional to the viscosity vanishes. Of course, if one considers the motion of a solid body in an incompressible fluid, with a no-slip condition at the interface, the issue of the inviscid limit is as least as difficult. However it is not clear if the additional difficulties linked to the body's dynamic make this issue more difficult or not. In this paper we consider the motion of a rigid body in an incompressible fluid occupying the complementary set in the space and we prove that a Kato type condition implies the convergence of the fluid velocity and of the body velocity as well, what seems to indicate that an answer in the case of a fixed boundary could also bring an answer to the case where there is a moving body in the fluid

    Statistical analysis of nitrous oxide emission factors from pastoral agriculture field trials conducted in New Zealand

    Get PDF
    AbstractBetween 11 May 2000 and 31 January 2013, 185 field trials were conducted across New Zealand to measure the direct nitrous oxide (N2O) emission factors (EF) from nitrogen (N) sources applied to pastoral soils. The log(EF) data were analysed statistically using a restricted maximum likelihood (REML) method. To estimate mean EF values for each N source, best linear unbiased predictors (BLUPs) were calculated. For lowland soils, mean EFs for dairy cattle urine and dung, sheep urine and dung and urea fertiliser were 1.16 ± 0.19% and 0.23 ± 0.05%, 0.55 ± 0.19% and 0.08 ± 0.02% and 0.48 ± 0.13%, respectively, each significantly different from one another (p < 0.05), except for sheep urine and urea fertiliser. For soils in terrain with slopes >12°, mean EFs were significantly lower. Thus, urine and dung EFs should be disaggregated for sheep and cattle as well as accounting for terrain

    Viscous-Inviscid Interactions in a Boundary-Layer Flow Induced by a Vortex Array

    Full text link
    In this paper we investigate the asymptotic validity of boundary layer theory. For a flow induced by a periodic row of point-vortices, we compare Prandtl's solution to Navier-Stokes solutions at different ReRe numbers. We show how Prandtl's solution develops a finite time separation singularity. On the other hand Navier-Stokes solution is characterized by the presence of two kinds of viscous-inviscid interactions between the boundary layer and the outer flow. These interactions can be detected by the analysis of the enstrophy and of the pressure gradient on the wall. Moreover we apply the complex singularity tracking method to Prandtl and Navier-Stokes solutions and analyze the previous interactions from a different perspective
    corecore