The next generation of lepton flavor violation experiments need high
intensity and high quality muon beams. Production of such beams requires
sending a short, high intensity proton pulse to the pion production target,
capturing pions and collecting the resulting muons in the large acceptance
transport system. The substantial increase of beam quality can be obtained by
applying the RF phase rotation on the muon beam in the dedicated FFAG ring,
which was proposed for the PRISM project.This allows to reduce the momentum
spread of the beam and to purify from the unwanted components like pions or
secondary protons. A PRISM Task Force is addressing the accelerator and
detector issues that need to be solved in order to realize the PRISM
experiment. The parameters of the required proton beam, the principles of the
PRISM experiment and the baseline FFAG design are introduced. The spectrum of
alternative designs for the PRISM FFAG ring are shown. Progress on ring main
systems like injection and RF are presented. The current status of the study
and its future directions are discussed.Comment: Studies performed within the PRISM Task Force initiativ