4 research outputs found

    Altered Expression of Zonula occludens-1 Affects Cardiac Na<sup>+</sup> Channels and Increases Susceptibility to Ventricular Arrhythmias

    No full text
    Zonula occludens-1 (ZO-1) is an intracellular scaffolding protein that orchestrates the anchoring of membrane proteins to the cytoskeleton in epithelial and specialized tissue including the heart. There is clear evidence to support the central role of intracellular auxiliary proteins in arrhythmogenesis and previous studies have found altered ZO-1 expression associated with atrioventricular conduction abnormalities. Here, using human cardiac tissues, we identified all three isoforms of ZO-1, canonical (Transcript Variant 1, TV1), CRA_e (Transcript Variant 4, TV4), and an additionally expressed (Transcript Variant 3, TV3) in non-failing myocardium. To investigate the role of ZO-1 on ventricular arrhythmogenesis, we generated a haploinsufficient ZO-1 mouse model (ZO-1+/−). ZO-1+/− mice exhibited dysregulated connexin-43 protein expression and localization at the intercalated disc. While ZO-1+/− mice did not display abnormal cardiac function at baseline, adrenergic challenge resulted in rhythm abnormalities, including premature ventricular contractions and bigeminy. At baseline, ventricular myocytes from the ZO-1+/− mice displayed prolonged action potential duration and spontaneous depolarizations, with ZO-1+/− cells displaying frequent unsolicited (non-paced) diastolic depolarizations leading to spontaneous activity with multiple early afterdepolarizations (EADs). Mechanistically, ZO-1 deficient myocytes displayed a reduction in sodium current density (INa) and an increased sensitivity to isoproterenol stimulation. Further, ZO-1 deficient myocytes displayed remodeling in ICa current, likely a compensatory change. Taken together, our data suggest that ZO-1 deficiency results in myocardial substrate susceptible to triggered arrhythmias

    Francisella tularensis Transmission by Solid Organ Transplantation, 2017

    No full text
    In July 2017, fever and sepsis developed in 3 recipients of solid organs (1 heart and 2 kidneys) from a common donor in the United States; 1 of the kidney recipients died. Tularemia was suspected only after blood cultures from the surviving kidney recipient grew Francisella species. The organ donor, a middle-aged man from the southwestern United States, had been hospitalized for acute alcohol withdrawal syndrome, pneumonia, and multiorgan failure. F. tularensis subsp. tularensis (clade A2) was cultured from archived spleen tissue from the donor and blood from both kidney recipients. Whole-genome multilocus sequence typing indicated that the isolated strains were indistinguishable. The heart recipient remained seronegative with negative blood cultures but had been receiving antimicrobial drugs for a medical device infection before transplant. Two lagomorph carcasses collected near the donor’s residence were positive by PCR for F. tularensis subsp. tularensis (clade A2). This investigation documents F. tularensis transmission by solid organ transplantation
    corecore