568 research outputs found
Pharmacokinetics and Pharmacodynamics of Intranasal and Intramuscular Administration of Naloxone in Working Dogs Administered Fentanyl
BACKGROUND: Working dogs exposed to narcotics might require reversal in the field.
OBJECTIVE: To explore the pharmacokinetic and pharmacodynamic effects of naloxone administered intramuscularly (IM) or intranasally (IN) to reverse fentanyl sedation in working dogs.
ANIMALS: Ten healthy, working dogs aged 1.7 ± 1 year and weighing 26 ± 3 kg.
METHODS: In this randomized, controlled cross-over study dogs received either 4 mg of naloxone IN or IM 10 minutes after fentanyl (0.3 mg IV) administration. Sedation was assessed at baseline and 5 minutes after fentanyl administration, then at 5, 10, 15, 20, 25, 30, 60 and 120 minutes after reversal with naloxone. Blood samples for naloxone detection were obtained at 0, 5, 10, 30, 60 and 120 minutes. Pharmacokinetic parameters and sedation scores were compared between IM and IN naloxone groups.
RESULTS: There was a significant increase in sedation score from baseline (0.25 [-4 to 1] IM; 0 [-2 to 1] IN) after fentanyl administration (11 [5-12] IM; 9.25 [4-11] IN), followed by a significant reduction at 5 (0.5 [-0.5 to 1.5] IM; 1.25 [-1.5 to 4.5] IN) through 120 minutes (-0.5 [-2 to 1] IM; 0 [-4.5 to 1] IN) after reversal with naloxone. Route of administration had no significant effect on sedation score. Maximum plasma concentration was significantly lower after IN administration (11.7 [2.8-18.8] ng/mL IN, 36.7 [22.1-56.4] ng/mL IM, P \u3c .001) but time to reach maximum plasma concentration was not significantly different from IM administration.
CONCLUSION AND CLINICAL IMPORTANCE: Although IM administration resulted in higher naloxone plasma concentrations compared to IN, reversal of sedation was achieved via both routes after administration of therapeutic doses of fentanyl
Peripheral Neuropathy Evaluations of Patients With Prolonged Long COVID.
Background and objectives: Recovery from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection appears exponential, leaving a tail of patients reporting various long COVID symptoms including unexplained fatigue/exertional intolerance and dysautonomic and sensory concerns. Indirect evidence links long COVID to incident polyneuropathy affecting the small-fiber (sensory/autonomic) axons.
Methods: We analyzed cross-sectional and longitudinal data from patients with World Health Organization (WHO)-defined long COVID without prior neuropathy history or risks who were referred for peripheral neuropathy evaluations. We captured standardized symptoms, examinations, objective neurodiagnostic test results, and outcomes, tracking participants for 1.4 years on average.
Results: Among 17 patients (mean age 43.3 years, 69% female, 94% Caucasian, and 19% Latino), 59% had ≥1 test interpretation confirming neuropathy. These included 63% (10/16) of skin biopsies, 17% (2/12) of electrodiagnostic tests and 50% (4/8) of autonomic function tests. One patient was diagnosed with critical illness axonal neuropathy and another with multifocal demyelinating neuropathy 3 weeks after mild COVID, and ≥10 received small-fiber neuropathy diagnoses. Longitudinal improvement averaged 52%, although none reported complete resolution. For treatment, 65% (11/17) received immunotherapies (corticosteroids and/or IV immunoglobulins).
Discussion: Among evaluated patients with long COVID, prolonged, often disabling, small-fiber neuropathy after mild SARS-CoV-2 was most common, beginning within 1 month of COVID-19 onset. Various evidence suggested infection-triggered immune dysregulation as a common mechanism
Bostonia: The Boston University Alumni Magazine. Volume 9
Founded in 1900, Bostonia magazine is Boston University's main alumni publication, which covers alumni and student life, as well as university activities, events, and programs
Effect of Surface Flow on Topography in Niobium Electropolishing
Abstract Electropolishing (EP) is reliably delivering improved performance of multi-celled niobium SRF accelerator cavities, attributed to the smoother surface obtained. This superior leveling is a consequence of an etchant concentration gradient layer that arises in the HF-H 2 SO 4 electrolyte adjacent to the niobium surface during polishing. Electrolyte circulation raises the prospect that fluid flow adjacent to the surface might affect the diffusion layer and impair EP performance. In this study, preliminary bench-top experiments with a moving electrode apparatus were conducted. We find that flow conditions approximating cavity EP show no effects attributable to depletion layer disruption
Building a diverse workforce and thinkforce to reduce health disparities
The Research Centers in Minority Institutions (RCMI) Program was congressionally man-dated in 1985 to build research capacity at institutions that currently and historically recruit, train, and award doctorate degrees in the health professions and health-related sciences, primarily to individuals from underrepresented and minority populations. RCMI grantees share similar infrastructure needs and institutional goals. Of particular importance is the professional development of multidisciplinary teams of academic and community scholars (the “workforce”) and the harnessing of the heterogeneity of thought (the “thinkforce”) to reduce health disparities. The purpose of this report is to summarize the presentations and discussion at the RCMI Investigator Development Core (IDC) Workshop, held in conjunction with the RCMI Program National Conference in Bethesda, Maryland, in December 2019. The RCMI IDC Directors provided information about their professional development activities and Pilot Projects Programs and discussed barriers identified by new and early-stage investigators that limit effective career development, as well as potential solutions to overcome such obstacles. This report also proposes potential alignments of professional development activities, targeted goals and common metrics to track productivity and success
Glycan shifting on hepatitis C virus (HCV) E2 glycoprotein is a mechanism for escape from broadly neutralizing antibodies
Hepatitis C virus (HCV) infection is a major cause of liver disease and hepatocellular carcinoma. Glycan shielding has been proposed to be a mechanism by which HCV masks broadly neutralizing epitopes on its viral glycoproteins. However, the role of altered glycosylation in HCV resistance to broadly neutralizing antibodies is not fully understood. Here, we have generated potent HCV neutralizing antibodies hu5B3.v3 and MRCT10.v362 that, similar to the previously described AP33 and HCV1, bind to a highly conserved linear epitope on E2. We utilize a combination of in vitro resistance selections using the cell culture infectious HCV and structural analyses to identify mechanisms of HCV resistance to hu5B3.v3 and MRCT10.v362. Ultra deep sequencing from in vitro HCV resistance selection studies identified resistance mutations at asparagine N417 (N417S, N417T and N417G) as early as 5 days post treatment. Comparison of the glycosylation status of soluble versions of the E2 glycoprotein containing the respective resistance mutations revealed a glycosylation shift from N417 to N415 in the N417S and N417T E2 proteins. The N417G E2 variant was glycosylated neither at residue 415 nor at residue 417 and remained sensitive to MRCT10.v362. Structural analyses of the E2 epitope bound to hu5B3.v3 Fab and MRCT10.v362 Fab using X-ray crystallography confirmed that residue N415 is buried within the antibody–peptide interface. Thus, in addition to previously described mutations at N415 that abrogate the β-hairpin structure of this E2 linear epitope, we identify a second escape mechanism, termed glycan shifting, that decreases the efficacy of broadly neutralizing HCV antibodies
Towards quantifying the increasing role of oceanic heat in sea ice loss in the new Arctic
The loss of Arctic sea ice has emerged as a leading signal of global warming. This, together with acknowledged impacts on other components of the Earth system, has led to the term “the new Arctic.” Global coupled climate models predict that ice loss will continue through the twenty-first century, with implications for governance, economics, security, and global weather. A wide range in model projections reflects the complex, highly coupled interactions between the polar atmosphere, ocean, and cryosphere, including teleconnections to lower latitudes. This paper summarizes our present understanding of how heat reaches the ice base from the original sources—inflows of Atlantic and Pacific Water, river discharge, and summer sensible heat and shortwave radiative fluxes at the ocean/ice surface—and speculates on how such processes may change in the new Arctic. The complexity of the coupled Arctic system, and the logistic and technological challenges of working in the Arctic Ocean, require a coordinated interdisciplinary and international program that will not only improve understanding of this critical component of global climate but will also provide opportunities to develop human resources with the skills required to tackle related problems in complex climate systems. We propose a research strategy with components that include 1) improved mapping of the upper- and middepth Arctic Ocean, 2) enhanced quantification of important process, 3) expanded long-term monitoring at key heat-flux locations, and 4) development of numerical capabilities that focus on parameterization of heat-flux mechanisms and their interactions.publishedVersio
A Treatment Trial of Acupuncture in IBS Patients
To compare the effects of true and sham acupuncture in relieving symptoms of IBS
Recommended from our members
Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity.
Many genetic loci affect circulating lipid levels, but it remains unknown whether lifestyle factors, such as physical activity, modify these genetic effects. To identify lipid loci interacting with physical activity, we performed genome-wide analyses of circulating HDL cholesterol, LDL cholesterol, and triglyceride levels in up to 120,979 individuals of European, African, Asian, Hispanic, and Brazilian ancestry, with follow-up of suggestive associations in an additional 131,012 individuals. We find four loci, in/near CLASP1, LHX1, SNTA1, and CNTNAP2, that are associated with circulating lipid levels through interaction with physical activity; higher levels of physical activity enhance the HDL cholesterol-increasing effects of the CLASP1, LHX1, and SNTA1 loci and attenuate the LDL cholesterol-increasing effect of the CNTNAP2 locus. The CLASP1, LHX1, and SNTA1 regions harbor genes linked to muscle function and lipid metabolism. Our results elucidate the role of physical activity interactions in the genetic contribution to blood lipid levels
- …