1,770 research outputs found

    Wave-induced boundary mixing in a partially mixed estuary

    Get PDF
    We present observations that reveal the existence of horizontally propagating, tidally-driven, high-frequency internal wave (IW) packets in a channel of the partially mixed St. Lawrence Estuary. The packets propagate transversely to the channel axis and collide with the shoaling lateral boundaries. The structure and energy of IWs are diagnosed with a two-dimensional, nonlinear nonhydrostatic model, and the results are compared with weakly nonlinear Korteweg-de-Vries (KdV) theory. The behavior of IWs running into the shoaling lateral boundary is examined in terms of published laboratory and numerical experiments. Our analysis indicates that IWs break on the slope, during which 6% of their energy is converted into potential energy through vertical mixing. The corresponding buoyancy flux, when averaged over the surf zone and the time of the mixing event, is more than an order of magnitude larger than values predicted by a published non-IWresolving three-dimensional (3D) baroclinic circulation model of the region. Even averaging across the full domain and tidal period yields mixing rates that are a significant proportion of those in the 3D circulation model. These indirect inferences suggest that wave-induced boundary mixing may be of general significance in partially mixed estuaries

    Interfacial solitary wave run-up in the St. Lawrence Estuary

    Get PDF
    Density variations show evidence of interfacial solitary waves (ISW) running up the sloping boundary of an island in the St. Lawrence Estuary, confirming inferences based remote sensing. Further detail is suggested by simulations created with a two-dimensional nonhydrostatic numerical model. The simulations confirm theoretical predictions of the location of wave breaking, something that is difficult to observe in the field. Two other results of the simulations match laboratory findings: the creation of turbulent boluses that propagate upslope of the breaking zone, and the creation of an intermediate layer that transports mixed water away from the mixing site. Although our sampling could not resolve the intermediate mixing layer, it did provide evidence of boluses. In addition to ISW breaking the bolus and intrusion effects may also be important in coastal regions

    Fault Slip and Exhumation History of the Willard Thrust Sheet, Sevier Fold‐Thrust Belt, Utah: Relations to Wedge Propagation, Hinterland Uplift, and Foreland Basin Sedimentation

    Get PDF
    Zircon (U‐Th)/He (ZHe) and zircon fission track thermochronometric data for 47 samples spanning the areally extensive Willard thrust sheet within the western part of the Sevier fold‐thrust belt record enhanced cooling and exhumation during major thrust slip spanning approximately 125–90 Ma. ZHe and zircon fission track age‐paleodepth patterns along structural transects and age‐distance relations along stratigraphic‐parallel traverses, combined with thermo‐kinematic modeling, constrain the fault slip history, with estimated slip rates of ~1 km/Myr from 125 to 105 Ma, increasing to ~3 km/Myr from 105 to 92 Ma, and then decreasing as major slip was transferred onto eastern thrusts. Exhumation was concentrated during motion up thrust ramps with estimated erosion rates of ~0.1 to 0.3 km/Myr. Local cooling ages of approximately 160–150 Ma may record a period of regional erosion, or alternatively an early phase of limited... (see full abstract in article)

    Turbulence and boluses on an internal beach

    Get PDF
    In a manner similar to that of surface waves on beaches, high-frequency interfacial waves (IWs) may break when approaching the \u27internal coastline,\u27 where the undisturbed pycnocline intersects the shoaling bottom. This process has been studied previously in idealized laboratory and numerical experiments but there are few field observations to document the properties of IWs shoaling on natural internal beaches. This paper presents observations of currents, density and turbulence collected inshore of the break point of an internal beach of the St. Lawrence Estuary. A series of large- and small-amplitude complex-shaped and unorganized internal boluses was observed. The structure of these boluses is discussed, along with their role in boundary turbulence and transport

    Sediment resuspension and nepheloid layers induced by long internal solitary waves shoaling orthogonally on uniform slopes

    Get PDF
    Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Continental Shelf Research 72 (2014): 21-33, doi:10.1016/j.csr.2013.10.019.Two-dimensional, nonlinear and nonhydrostatic field-scale numerical simulations are used to examine the resuspension, dispersal and transport of mud-like sediment caused by the shoaling and breaking of long internal solitary waves on uniform slopes. The patterns of erosion and transport are both examined, in a series of test cases with varying conditions. Shoreward sediment movement is mainly within boluses, while seaward movement is within intermediate nepheloid layers. Several relationships between properties of the suspended sediment and control parameters are determined such as the horizontal extent of the nehpeloid layers, the total mass of resuspended sediment and the point of maximum bed erosion. The numerical results provide a plausible explanation for acoustic backscatter patterns observed during and after the shoaling of internal solitary wavetrains in a natural coastal environment. The results may further help interpret sedimentary structures that may have been shaped by internal waves and add an another e ective mechanism for o shore dispersal of muddy sediments.This research was funded by the Natural Sciences and Engineering Research Council of Canada (D. Bourgault) and by the Spanish Research Project CGL2009-13254 (M. Morsilli)

    Measurements of shoaling internal waves and turbulence in an estuary

    Get PDF
    Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 118 (2013): 273–286, doi:10.1029/2012JC008154.The shoaling of horizontally propagating internal waves may represent an important source of mixing and transport in estuaries and coastal seas. Including such effects in numerical models demands improvements in the understanding of several aspects of the energetics, especially those relating to turbulence generation, and observations are needed to build this understanding. To address some of these issues in the estuarine context, we undertook an intensive field program for 10 days in the summer of 2008 in the St. Lawrence Estuary. The sampling involved shore-based photogrammetry, ship-based surveys, and an array of moorings in the shoaling region that held both conventional and turbulence-resolving sensors. The measurements shed light on many aspects of the wave shoaling process. Wave arrivals were generally phase-locked with the M2 tide, providing hints about far-field forcing. In the deeper part of the study domain, the waves propagated according to the predictions of linear theory. In intermediate-depth waters, the waves traversed the field site perpendicularly to isobaths, a pattern that continued as the waves transformed nonlinearly. Acoustic Doppler velocimeters permitted inference of the turbulent energetics, and two main features were studied. First, during a period of shoaling internal waves, turbulence dissipation rates exceeded values associated with tidal shear by an order of magnitude. Second, the evolving spectral signatures associated with a particular wave-shoaling event suggest that the turbulence is at least partly locally generated. Overall, the results of this study suggest that parameterizations of wave-induced mixing could employ relatively simple dynamics in deep water, but may have to handle a wide suite of turbulence generation and transport mechanisms in inshore regions.The work was supported by the Killam Foundation, the Natural Sciences and Engineering Research Council of Canada, the Canadian Foundation for Innovation, the Canadian Foundation for Climate and Atmospheric Sciences, and the Canadian Department of Fisheries and Oceans.2013-07-3

    An Analysis of the Optimal Control Modification Method Applied to Flutter Suppression

    Get PDF
    Unlike basic Model Reference Adaptive Control (MRAC)l, Optimal Control Modification (OCM) has been shown to be a promising MRAC modification with robustness and analytical properties not present in other adaptive control methods. This paper presents an analysis of the OCM method, and how the asymptotic property of OCM is useful for analyzing and tuning the controller. We begin with a Lyapunov stability proof of an OCM controller having two adaptive gain terms, then the less conservative and easily analyzed OCM asymptotic property is presented. Two numerical examples are used to show how this property can accurately predict steady state stability and quantitative robustness in the presence of time delay, and relative to linear plant perturbations, and nominal Loop Transfer Recovery (LTR) tuning. The asymptotic property of the OCM controller is then used as an aid in tuning the controller applied to a large scale aeroservoelastic longitudinal aircraft model for flutter suppression. Control with OCM adaptive augmentation is shown to improve performance over that of the nominal non-adaptive controller when significant disparities exist between the controller/observer model and the true plant model

    A Review of the MLAS Parachute Systems

    Get PDF
    The NASA Engineering and Safety Center (NESC) is developing the Max Launch Abort System (MLAS) as a risk-mitigation design should problems arise with the baseline Orion spacecraft launch abort design. The Max in MLAS is dedicated to Max Faget, the renowned NASA spacecraft designer. The MLAS flight test vehicle consists of boost skirt, coast skirt and the MLAS fairing which houses a full scale boilerplate Orion Crew Module (CM). The objective of the flight test is to prove that the CM can be released from the MLAS fairing during pad abort conditions without detrimental recontact between the CM and fairing, achieving performance similar to the Orion launch abort system. The boost and coast skirts provide the necessary thrust and stability to achieve the flight test conditions and are released prior to the test -- much like the Little Joe booster was used in the Apollo Launch Escape System tests. To achieve the test objective, two parachutes are deployed from the fairing to reorient the CM/fairing to a heatshield first orientation. The parachutes then provide the force necessary to reduce the total angle of attack and body angular rates required for safe release of the CM from the fairing. A secondary test objective after CM release from the fairing is to investigate the removal of the CM forward bay cover (FBC) with CM drogue parachutes for the purpose of attempting to synchronously deploying a set of CM main parachutes. Although multiple parachute deployments are used in the MLAS flight test vehicle to complete its objective, there are only two parachute types employed in the flight test. Five of the nine parachutes used for MLAS are 27.6 ft D(sub 0) ribbon parachutes, and the remaining four are standard G-12 cargo parachutes. This paper presents an overview of the 27.6 ft D(sub 0) ribbon parachute system employed on the MLAS flight test vehicle for coast skirt separation, fairing reorientation, and as drogue parachutes for the CM after separation from the fairing. Discussion will include: the process used to select this design, previously proven as a spin/stall recovery parachute; descriptions of all components of the parachute system; the minor modifications necessary to adapt the parachute to the MLAS program; the techniques used to analyze the parachute for the multiple roles it performs; a discussion of the rigging techniques used to interface the parachute system to the vehicle; and a brief description of how the evolution of the program affected parachute usage and analysis. An overview of the Objective system, rationale for the MLAS approach and the future of the program will also be presented. We hope to have flight test results to report at the time of the Conference Presentation

    Molecular analysis of endocrine disruption in hornyhead turbot at wastewater outfalls in southern california using a second generation multi-species microarray.

    Get PDF
    Sentinel fish hornyhead turbot (Pleuronichthysverticalis) captured near wastewater outfalls are used for monitoring exposure to industrial and agricultural chemicals of ~ 20 million people living in coastal Southern California. Although analyses of hormones in blood and organ morphology and histology are useful for assessing contaminant exposure, there is a need for quantitative and sensitive molecular measurements, since contaminants of emerging concern are known to produce subtle effects. We developed a second generation multi-species microarray with expanded content and sensitivity to investigate endocrine disruption in turbot captured near wastewater outfalls in San Diego, Orange County and Los Angeles California. Analysis of expression of genes involved in hormone [e.g., estrogen, androgen, thyroid] responses and xenobiotic metabolism in turbot livers was correlated with a series of phenotypic end points. Molecular analyses of turbot livers uncovered altered expression of vitellogenin and zona pellucida protein, indicating exposure to one or more estrogenic chemicals, as well as, alterations in cytochrome P450 (CYP) 1A, CYP3A and glutathione S-transferase-α indicating induction of the detoxification response. Molecular responses indicative of exposure to endocrine disruptors were observed in field-caught hornyhead turbot captured in Southern California demonstrating the utility of molecular methods for monitoring environmental chemicals in wastewater outfalls. Moreover, this approach can be adapted to monitor other sites for contaminants of emerging concern in other fish species for which there are few available gene sequences
    corecore