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Álvarez-Salgado, X. A., M. Nieto-Cid, S. Piedracoba, B. G. Crespo, J. Gago, S. Brea, I. G. Teixeira,

F. G. Figueiras, J. L. Garrido, G. Rosón, C. G. Castro and M. Gilcoto: Origin and fate of a bloom of
Skeletonema costatum during a winter upwelling/downwelling sequence in the Rı́a de Vigo (NW
Spain). 1127.

Araligidad, Nilesh: See M. M. Ali, V. V. Gopalakrishna, Nilesh Araligidad, G. Venkata Reddy and
G. Salgoanker. 671.

Atilla, Nazan, John W. Fleeger and Christopher M. Finelli: Effects of habitat complexity and
hydrodynamics on the abundance and diversity of small invertebrates colonizing artificial
substrates. 1151.

Aya, Izuo: See Peter G. Brewer, Edward T. Pelzer, Peter Walz, Izuo Aya, Kenji Yamane, Ryuji
Kojima, Yasuhara Nakajima, Noriko Nakyama, Peter Haugan and Truls Johannessen. 9.

Berg, Peter: See Christof Meile, Peter Berg, Philippe van Cappellen and Kagan Tuncay. 601.
Berloff, Pavel S.: On rectification of randomly forced flows. 497.
Bograd, Steven J. and Arnold W. Mantyla: On the subduction of upwelled waters in the California

Current. 863.
Boschker, H. T. S.: See L. Moodley, J. J. Middelburg, K. Soetaert, H. T. S. Boschker, P. M. J.

Herman and C. H. R. Heip. 457.
Boudreau, Bernard P.: See Nicola J. Grigg, Bernard P. Boudreau, Ian T. Webster and Phillip W.

Ford. 437.
Bourgault, Daniel, Daniel E. Kelley and Peter S. Galbraith: Interfacial solitary wave run-up in the St.

Lawrence Estuary. 1001.
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Interfacial solitary wave run-up in the St. Lawrence Estuary

by Daniel Bourgault1, Daniel E. Kelley2 and Peter S. Galbraith3

ABSTRACT
Density variations show evidence of interfacial solitary waves (ISW) running up the sloping

boundary of an island in the St. Lawrence Estuary, confirming inferences based remote sensing.
Further detail is suggested by simulations created with a two-dimensional nonhydrostatic numerical
model. The simulations confirm theoretical predictions of the location of wave breaking, something
that is difficult to observe in the field. Two other results of the simulations match laboratory findings:
the creation of turbulent boluses that propagate upslope of the breaking zone, and the creation of an
intermediate layer that transports mixed water away from the mixing site. Although our sampling
could not resolve the intermediate mixing layer, it did provide evidence of boluses. In addition to
ISW breaking the bolus and intrusion effects may also be important in coastal regions.

1. Introduction

Tidally-driven interfacial solitary waves (ISW) were observed to collide against the
lateral boundaries of the St. Lawrence Estuary by Bourgault and Kelley (2003), using
shorebased photography. The results of that study suggested that the vertical mixing
induced by ISW breaking on the slope, although sporadic and localized to the swash zone,
may yield tidally- and laterally-averaged mixing rates that are comparable to shear-induced
rates in a three-dimensional tidal circulation model of the estuary (Saucier and Chassé,
2000).

Unfortunately, there are no available direct field measurements of ISW-induced bound-
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ary mixing in this estuary to verify the Bourgault and Kelley (2003) hypothesis. The
collection of such field measurements in context requires an imposing experimental
procedure, given the need to understand the processes of ISW generation, propagation, and
interaction with boundaries.

As a first step toward the general goal of quantifying boundary mixing, and to help in
coordinating future field investigations, we undertook an exploratory field experiment in
the region identified by Bourgault and Kelley (2003) as a site of ISW run-up. We discuss
these observations here, along with the results of numerical simulations done to aid in their
interpretation. In providing field evidence of a process often idealized in the laboratory
(Helfrich, 1992; Michallet and Ivey, 1999) and in models (Vlasenko and Hutter, 2002), we
hope to contribute to the understanding of interfacial solitary waves in the coastal
environment.

2. Geographical context

Figure 1 shows the study area in the St. Lawrence Estuary. Recent reviews of the general
oceanography of the estuary are given by Saucier and Chassé (2000) and Bourgault and
Kelley (2003). Only a summary on ISW boundary mixing is provided here.

The thick curve on Figure 1 depicts the position, observed by Bourgault and Kelley
(2003), of the leading wave of a tidally-driven large-amplitude ISW packet that appears
around three hours after the time of low water (LW � 3.00)4. The echo-sounder traces
from another field season (Bourgault et al., 2001) reveal that the ISWs have amplitude
a0 � 15 m; compared to the surface layer thickness h1 � 10 m this indicates a nonlinear
character of the ISWs.

This wavetrain heads toward the nearly uniform shoaling edge of Ile-aux-Lièvres where
it is suspected to break around the 30 m isobath (Bourgault and Kelley, 2003) and thus
enhance mixing shoreward of the breaking depth. The wave-island collision occurs at an
angle of roughly 45° in the southern part of the island, while the collision is close to being
orthogonal in the northern part.

Combining these observations with numerical simulations and results from the labora-
tory experiment of Michallet and Ivey (1999) for ISW running orthogonally into linear
slopes, Bourgault and Kelley (2003) attempted to determine the wave energy budget. They
concluded that the wavetrain carries roughly 4 MJ m�1 (energy per unit distance along the
wave crest) to the island slope. Assuming that the laboratory findings of Michallet and Ivey
(1999) on ISW energy transfer apply to the estuary, Bourgault and Kelley (2003) inferred
that the tidally- and laterally-averaged ISW-induced vertical buoyancy flux for the region
to be roughly J� � 6 � 10�4 W m�2.

The results of this prior work, based on remote sensing observations and indirect

4. For ease of comparison with the Atlas of Tidal Currents (Government of Canada, 1997), the time in the text
and figures is expressed as the number of hours relative to the time of low-water (LW, henceforth) at the
Pointe-au-Père tidal gauge, the location of which is indicated in the inset of Figure 1.
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calculations, motivated the present study to look for ISWs near Ile-aux-Lièvres using in
situ measurements, as described in the next section.

3. Methods

a. Field study

The sampling was carried out in August 2002 with a 10 m vessel. Given the Bourgault
and Kelley (2003) results of the phase-locking of the ISW packets to the tide, the sampling

Figure 1. Map of the study region in the St. Lawrence Estuary. The position of the internal wavetrain
crest observed by Bourgault and Kelley (2003) at LW � 3.00 in August 2000 is indicated, along
with its propagation direction and energy of 3.9 MJ m�1. The dashed line near the north end of the
island indicates a cross-slope transect sampled in the present study, with dots representing CTD
stations and the open circle indicating the CTD-chain anchor station. The inset illustrates the
location of the Pointe-au-Père tidal gauge, marked PP, which provides the low-water time
reference used in the text.
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was keyed to the tidal phase. The field work involved both conductivity-temperature-depth
profiler (CTD) transects and CTD-chain anchor stations.

The first step was to carry out CTD profiles at 5 stations along a transect orthogonal to
the island edge (solid circles on Fig. 1). This section was selected because Bourgault and
Kelley (2003) found that ISWs collide at almost right angles to the isobaths there. The new
measurements were made just before the expected time of ISW impact, with the aim of
measuring the stratification to be experienced by the ISWs as they collided with the sloping
bottom.

At the end of the transect, the boat was taken to a location along the 20 m isobath (open
circle on Fig. 1) to do an anchor station covering the expected time of ISW collision with
the slope. This station was located in the predicted ISW surf and swash zone, slightly
inshore of the predicted breaking depth (Hb � 30 m, according to Bourgault and Kelley
(2003); see more below). The sampling involved the use of either two or three CTD sensors
attached at different depths along a line. This CTD chain sampled between 0.5 Hz and 2 Hz
for approximately 4 hours around the time where ISWs were most expected to occur, i.e.
between LW � 2.00 and LW � 6.00. Since the CTD packages were not anchored to the
bottom, and since the currents are large, the CTDs moved vertically throughout the time
series as discussed in Section 4. The CTD transect was repeated at the completion of the
anchor sampling station.

The initial plan was to collect measurements during the flooding phase of every second
tidal cycle between August 23 and August 30, 2002. However, rough weather and technical
difficulties limited the sampling to 3 cycles, on August 23, 27 and 28. Figure 2 shows the
sampling periods relative to the tidal phase.

b. Numerical model

Recognizing that the field program had relatively sparse sampling, we set up a numerical
model to help us interpret the measurements and to provide insights into the temporal and
spatial scales that we were not able to measure. Three-dimensional nonhydrostatic models
are too computationally expensive for this application, so we used a two-dimensional
approach. The model was described by Bourgault and Kelley (2004) to which the reader is
referred for details and validation.

We set up the model with the hydrography for application to ISW running into
Ile-aux-Lièvres. The bathymetry was taken from the transect where CTD measurements
were made (Fig. 1). The horizontal and vertical resolution grid spacing were �x � 1 m and
�z � 0.25 m, respectively. A frictional bottom boundary condition was used with the
roughness length set to l0 � 1.5 � 10�4 m (see Bourgault and Kelley (2004) for details).

The initial background density was set to

�t�x, z	 � �0 �
��

2 �1 � tanh �z � z0


 ��, (1)
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with z positive downward. Motivated by the observations (next section) we examined
limiting cases of lower and higher stratification. For the low stratification case we set �0,
��, z0, and 
 to 19.5 kg m�3, 4.5 kg m�3, 10 m, and 3.5 m, respectively. For the
high-stratification case, the corresponding values were 18.5 kg m�3, 5.5 kg m�3, 10 m,
and 2 m (see Fig. 4). Figure 3 shows the model geometry and the initial density field (low
stratification case) used to generate a shoreward propagating ISW of amplitude a0 � 15 m
breaking on Ile-aux-Lièvres.

4. Results

a. Field results

i. Profiles and transects. Figure 4 shows profiles of density �t and squared buoyancy
frequency N2 observed in the estuary interior (i.e. deepest station) before the expected
occurrence of ISWs. From August 23 to August 28, the depth of the pycnocline varied from
8 m to 13 m, the stratification at the pycnocline varied from N2 � 12 � 10�3 s�2 to N2 �
6 � 10�3 s�2 and the density difference between bottom and surface varied from �� �
5.5 kg m�3 to �� � 4.5 kg m�3. On August 23 the density exhibits a two-layer structure
while on August 27 and 28 a three-layer structure is observed with stratification in the top
5 m reaching N2 � 8 � 10�3 s�2.

Figure 5 shows the cross-sectional density field collected at LW � 6.5 on August 28.
The stratification in the estuary interior extends to the boundary region, thus providing a
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Figure 2. Water level during August 2002 at the Pointe-au-Père tidal gauge (see Fig. 1). The upper
panel provides the spring-neap context, and the thick traces on the lower panel indicate the
sampling times.
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waveguide for ISWs to reach the pycnocline-bottom intersection. Other transects collected
on August 23 and 27 did not reveal important variation from this general cross-sectional
density structure and are omitted for conciseness.

The observations of Figure 5 also reveal the existence of a cross-channel density
gradient below 20 m of ��/� x � �4 � 10�4 kg m�4. Since this is of the same order of
magnitude as the along-channel estuarine density gradient ��/� y � 10�4 kg m�4 (e.g.
Pelletier and Lebel, 1979), one might anticipate that this will yield a circulation of the same
order of magnitude as the along-channel estuarine circulation. This hypothesis is yet to be
tested in the field.

ii. Fixed station. Figure 6 shows time series of the densities of the suspended CTDs, and
the depths recorded by each. (Recall that the CTDs were deployed along an unanchored
line that tilted in the current.)

The depth measurements indicate that the CTDs remained at relatively fixed depths from
LW � 2.00 to LW � 4.00 but that they shallowed by about 5 m from LW � 4.00 to LW �
6.00. This is presumably a result of increasing tidal currents, which reach 2.5 m s�1 at this
phase of the tide (Saucier and Chassé, 2000). Out of a desire to study ISW dynamics in
isolation of strong background current, we henceforth focus on the earlier time interval,
LW � 2.00 to LW � 4.00, despite the existence of interesting signals throughout the
sampling period.
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Figure 3. Model geometry and initial density field (top) used to generate a large amplitude solitary
wave (middle) breaking and running into the shoaling slope of Ile-aux-Lièvres (bottom).
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As anticipated from the Bourgault and Kelley (2003) study, frequent variations were
recorded in the density time series. These variations, which reached 5 kg m�3, were mainly
observed below the mean pycnocline (i.e. below �10 m). An exception is the period from
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Figure 4. Density and squared buoyancy frequency in the estuary interior before the expected
occurrences of ISW (i.e. before LW � 2.00). Also shown are two analytical profiles used to
represent high and low stratification in the numerical simulations.
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LW � 3.50 to LW � 5.00 on August 28, during which high frequency fluctuations were
recorded above the pycnocline but not below it.

The variation in the earlier part (i.e. from LW � 2.0 to LW � 3.0) of all three time series
exhibits a repetitive pattern. There is an initial drop in density by around 4 kg m�3, which
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takes place over a 5 min interval at around LW � 2.4, after which follow distinct rises in
density as well as other irregular fluctuations. This pattern is most noticeable on August 23
and is shown in greater detail in Figure 7. These individual rising events have duration that
varies from 60 s (e.g. the event around 18 min) to 300 s (e.g. the event around 64 min).
Thus, the shortest of these events has a duration comparable to the buoyancy period of
roughly 60 s.

To help interpret these observations we reproduce in Figure 8 the laboratory observa-
tions of Helfrich (1992) for an experiment on ISW breaking and run-up on a uniform slope.
These display a similar pattern to the field measurements, with an initial, slow reduction in
density being followed by a sequence of isolated bursts of increased density. The similarity
between the laboratory observations and the field results suggests that similar phenomena
occur in each case. The laboratory shadowgraphs showed that these events are generated
during the breaking, and subsequent running-up, of ISWs on sloping boundaries. These
events were named “turbulent boluses” by Helfrich (1992) and so we will designate them
as such henceforth. We thus interpret our observations as evidence of ISW breaking on the
slope of Ile-aux-Lièvres.

A time series of the isopycnal displacement ��(t) was estimated by

�� � ���d�̂

dz �
�1

, (2)
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Figure 7. Top: Comparison between recorded (thick line) and simulated (thin line) density fluctua-
tions �� at z � 15 m where the total depth is 20 m (i.e. at x � �850 m in the simulation). For
comparison with the numerical simulations the time in this figure is relative to the timing of the
initial density drop. Bottom: Vertical displacements as calculated by (2).
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where �� is the difference between the instantaneous density and the density taken just
before the arrival of the wave, and d�̂/dz is a time-invariant background density gradient
calculated from nearby hydrographic surveys. This gradient was derived from a least-
squared linear model of the form z � z(�̂), using only measurements in the 5 m to 17 m
depth range of the mooring. To avoid confounding effects of instrument movement, (2)
was applied only to intervals during which the instruments moved no more than 1 m
vertically. For example, for the August 23 data this condition was met by the period from
LW � 2.00 to LW � 3.00. According to this procedure, the boluses observed have
maximum vertical displacement 5 m � ����max � 7 m (Fig. 7).

b. Model results

i. Description of wave breaking. Figure 9 shows the simulated evolution of the density
field upon the impact of an ISW with the sloping boundary of Ile-aux-Lièvres. The results
for the case of a wavetrain collision are qualitatively similar. The simulation shows the
laminar incoming ISW evolving into a complex turbulent field upon collision with the
shoaling bottom. Many spiral features, typical of shear instabilities, and other more
complex density overturning structures are generated as the wave breaks and runs up the
slope. The largest of these overturns (e.g. the series of three billows seen around x �
�0.9 km at t � 10 min in Fig. 9) have vertical and horizontal scales of 10 m and 20 m,
respectively.

The transition from laminar to turbulent flow occurs at the wave breaking depth Hb �
29 m, determined as the depth at the location of the first occurrence of a density

Figure 8. Reproduction of the Helfrich (1992) figure illustrating laboratory measurements of density
time series at the interface-slope intersection in an experiment with two incident solitary waves
running into a shoaling linear slope. The abscissa is nondimensional time and the ordinate is
nondimensional density.
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overturning event. This value for the breaking depth derived from the numerical model can
be compared to the Vlasenko and Hutter (2002) breaking criterion for linear slopes,

Hb � h1 � a0

�

0.8� � 0.4�
, (3)

in which � is the uniform bottom slope (in degrees above horizontal), a0 is the wave
amplitude and h1 is the surface layer thickness. Because the slope of Ile-aux-Lièvres is

Figure 9. Simulated evolution of the density field upon impact of a single solitary wave with the
sloping boundary of Ile-aux-Lièvres.
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nonuniform, there is some ambiguity regarding the choice of � in applying (3) to this
environment. For example, the steepest slope, between �0.9 � x � �0.8 km, is � � 3.3°
while at the pycnocline-bottom intersection, i.e. at x � �0.65 km, � � 1.9°. Given this
range of uncertainty for �, and using a0 � 15 m and h1 � 10 m we obtain 28 � Hb �

33 m. The modeled breaking depth is thus consistent to the Vlasenko and Hutter (2002)
formulation to within the uncertainty.

ii. Onshore-propagating boluses. Isolated features reminiscent of up-slope propagating
turbulent boluses observed in the laboratory are also seen in the numerical simulations.
These are most noticeable for t � 40 min in Figure 9. Some of these boluses exhibit the
shape of internal solitary waves of elevation that are characterized with typical wavelength
of 10 m and amplitude of 5 m (e.g. at around x � �0.65 km at t � 40 min). Other
bolus-like features exhibit more irregular shapes such as the 40 m long and 4 m thick
structure seen around x � �0.6 km at t � 40 min. These modeled bolus amplitudes are
comparable to the vertical displacements inferred from the CTD measurements in Section
4a(ii), supporting the idea that we have observed ISW run-up in our field study.

A simulation of the density time series that an instrument would measure at z � 15 m in
a total depth of 20 m is shown in Figure 7 and compared to the field measurements of
August 23. The simulated time series shares many characteristics with the field observa-
tions as well as with the laboratory results of Helfrich (1992) as reproduced in our Figure 8.
Prominently, it shows a roughly 5 min duration decrease in density as the wave approaches
the instrument, after which there are several abrupt density increases, each lasting of order
2 minutes. Thus, the timescales also suggest we have observed boluses generated by ISWs
running-up Ile-aux-Lièvres.

A potentially important aspect of the boluses revealed by the numerical simulations is their
role in transporting sub-pycnocline water up-slope past the pycnocline-bottom intersection.
Boluses transporting sub-pycnocline water, i.e. water found below 10 m in the undisturbed
state (coded blue in Fig. 9), are evident as far inshore as the 5 m isobath. An estimation of the
volume of sub-pycnocline water transported by these boluses can be made by estimating the
area of the boluses found above the pycnocline. For example, the bolus at t � 40 min and x �
�0.6 km is roughly 40 m long and 4 m thick. This bolus thus transports 160 m3 per unit meter
of island length, of sub-pycnocline water up-slope. This wave-induced advective flux may be
important for bringing into the surface layer nutrient-rich sub-pycnocline water and may thus
impact the local marine ecosystem. It is worth noting that the region around Ile-aux-Lièvres is
recognized to be strategically important for the marine ecosystem of the St. Lawrence Estuary
(especially for marine mammals and birds) (Bédard et al., 1997).

iii. Offshore-propagating intrusive layer. To investigate the fate of water in the bottom
homogeneous layer, an artificial pseudo-tracer was inserted. The initial tracer concentra-
tion field C was defined to be a linear function of the depth z,

C�x, z, t � 0	 � z/z0, (4)
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with the scaling factor z0 arbitrarily set to 1 m. This tracer was then allowed to advect and
diffuse as a passive scalar.

Figure 10 (left panels) shows the distribution of C during breaking and run-up, at times
corresponding to those of Figure 9. In the early stage of the breaking/run-up process
(around t � 10 min), an offshore propagating and undulating feature emerges at around
20 m depth. This feature later develops into a well-defined 10 m thick intermediate layer.
By t � 60 min this layer has spread offshore by approximately 300 m. We note that this
intermediate layer, located just below the pycnocline, is not clearly seen in the density field
(Fig. 9).

The development of this intermediate layer is reminiscent of the Helfrich (1992)
laboratory observations of a patch of dye spreading as an intermediate intrusive layer
during wave breaking and swashing; compare his Figure 5 with our Figure 10. The
numerical simulations presented here also reveal that this intermediate layer is mostly

Figure 10. Simulated evolution of a passive scalar field C (left) and horizontal velocity u (right) upon
impact of an internal solitary wave with the sloping boundary of Ile-aux-Lièvres. Note that the
velocity scale changes between the third and fourth panels.

2005] 1013Bourgault et al.: Interfacial solitary wave run-up



composed of near-bottom water initially found below �30 m in the undisturbed state. This
suggests that ISW breaking on Ile-aux-Lièvres may provide a mechanism for generating
intermediate nepheloid layers if the wave-induced bottom shear stress is sufficient to
suspend sediments. This hypothesis remains to be tested in the field.

The signature of this intermediate layer is also seen in the horizontal velocity (Fig. 10,
right panels). For t � 40 min, i.e. at times when most of the transient features and boluses
have evolved up-slope past the wave breaking region, this intermediate layer is character-
ized with an offshore velocity of roughly 0.1 m s�1, centered around the 12 m isobath. The
velocity of this layer is consistent with the previous remark that the layer had spread 300 m
offshore in approximately 50 min.

5. Discussion and conclusion

Our goal was to follow up on the work of Bourgault and Kelley (2003), in which remote
sensing of surface roughness was used to identify ISW packets within the St. Lawrence
Estuary. The new work involved sampling within the water column, with an emphasis on
the region inshore of the wave-breaking zone. It also involved the use of a numerical model
to simulate regions and scales unaddressed by the field measurements.

The new field measurements and numerical simulations lend support to the hypothesis of
Bourgault and Kelley (2003) that internal waves impinge upon Ile-aux-Lièvres. Whether
these ISWs are causing the mixing rates predicted by Bourgault and Kelley (2003) remains
to be settled by in situ field turbulence measurements.

The simulations also suggest that ISW collision with the sloping topography of
Ile-aux-Lièvres generates boluses of turbulent water that move onshore from the breaking
zone. The modeled boluses are reminiscent of those observed in the laboratory, and the
similarity of each to our time-series measurements near Ile-aux-Lièvres suggests that bolus
generation indeed occurs at this site. Since this transported water comes from below the
pycnocline of the estuary interior, this flux could have biological consequences to the
ecosystem near Ile-aux-Lièvres.

Another result of ISW collision is suggested by the simulations. This is the generation of
an intrusive layer extending from the mixing zone back into the estuary interior.
Potentially, measurement of this return flow would provide a means of measuring the net
effect of mixing at a site, solving the vexing issue of measuring sporadic and spatially-
limited mixing events. In the present case, however, the sampling protocol was not able to
provide details of the intrusion phenomenon. Our conclusions rely instead on numerical
simulations and their similarity to observations in the laboratory (Helfrich, 1992; McPhee-
Shaw and Kunze, 2002). This intrusive layer will not be easy to observe in density
sampling (compare Figs. 10 and 9), but high-resolution velocity measurements may
resolve its predicted 0.1 m s�1 velocity and 10 m vertical scale.

Guided by our results, it may be possible to design a field program capable of measuring
not just the rate of mixing within internal wave breaking zones, but also the fluid transports
associated with the related effects of boluses and intrusive layers. Such measurements
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would move us closer to the goal of parameterizing mixing and other residual effects
induced by internal waves that are prominent in many coastal zones.
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