73 research outputs found

    Adjusted Comparison of Outcomes between Patients from CARTITUDE-1 versus Multiple Myeloma Patients with Prior Exposure to PI, Imid and Anti-CD-38 from a German Registry

    Get PDF
    Ciltacabtagene autoleucel (cilta-cel) is a Chimeric antigen receptor T-cell therapy with the potential for long-term disease control in heavily pre-treated patients with relapsed/refractory multiple myeloma (RRMM). As cilta-cel was assessed in the single-arm CARTITUDE-1 clinical trial, we used an external cohort of patients from the Therapie Monitor registry fulfilling the CARTITUDE-1 inclusion criteria to evaluate the effectiveness of cilta-cel for overall survival (OS) and time to next treatment (TTNT) vs. real-world clinical practice. Individual patient data allowed us to adjust the comparisons between both cohorts, using the inverse probability of treatment weighting (IPW; average treatment effect in the treated population (ATT) and overlap population (ATO) weights) and multivariable Cox proportional hazards regression. Outcomes were compared in intention-to-treat (HR, IPW-ATT: TTNT: 0.13 (95% CI: 0.07, 0.24); OS: 0.14 (95% CI: 0.07, 0.25); IPW-ATO: TTNT: 0.24 (95% CI: 0.12, 0.49); OS: 0.26 (95% CI: 0.13, 0.54)) and modified intention-to-treat (HR, IPW-ATT: TTNT: 0.24 (95% CI: 0.09, 0.67); OS: 0.26 (95% CI: 0.08, 0.84); IPW-ATO: TTNT: 0.26 (95% CI: 0.11, 0.59); OS: 0.31 (95% CI: 0.12, 0.79)) populations. All the comparisons were statistically significant in favor of cilta-cel. These results highlight cilta-cel’s potential as a novel, effective treatment to address unmet needs in patients with RRMM

    A global perspective on soil science education at third educational level; knowledge, practice, skills and challenges

    Get PDF
    The pivotal role of soil as a resource is not fully appreciated by the general public. Improving education in soil science represents a challenge in a world where soil resources are under serious threat. Today’s high school students, the world’s future landowners, agriculturalists, and decision makers, have the potential to change society’s apathy towards soils issues. This research aimed to compare the level of soil education in high and/or secondary schools in forty-three countries worldwide, together comprising 62% of the world's population. Comparisons were made between soil science content discussed in educationally appropriate textbooks via a newly proposed soil information coefficient (SIC). Interviews with teachers were undertaken to better understand how soil science education is implemented in the classroom. Statistical analyses were investigated using clustering. Results showed that gaps in soil science education were most commonly observed in countries where soil science is a non-compulsory or optional subject. Soil science concepts are predominantly a part of geography or environmental science curricula. Consequently, considerable variability in soil science education systems among investigated countries exists. Soil information coefficient‘s outcomes demonstrated that a methodological approach combining textbooks and the use of modern digitally based strategies in the educational process significantly improved soil education performances. Overall, soil science education is under-represented in schools worldwide. Dynamic new approaches are needed to improve pivotal issues such as: i) promoting collaborations and agreements between high school and universities; ii) encouraging workshops and practical exercises such as field activities; and, iii) implementing technology tools. This, in turn, will prepare the next generation to contribute meaningfully towards solving present and future soil problems

    Observation of Cosmic Ray Anisotropy with Nine Years of IceCube Data

    Get PDF

    Studies of a muon-based mass sensitive parameter for the IceTop surface array

    Get PDF

    Measuring the Neutrino Cross Section Using 8 years of Upgoing Muon Neutrinos Observed with IceCube

    Get PDF
    The IceCube Neutrino Observatory detects neutrinos at energies orders of magnitude higher than those available to current accelerators. Above 40 TeV, neutrinos traveling through the Earth will be absorbed as they interact via charged current interactions with nuclei, creating a deficit of Earth-crossing neutrinos detected at IceCube. The previous published results showed the cross section to be consistent with Standard Model predictions for 1 year of IceCube data. We present a new analysis that uses 8 years of IceCube data to fit the νμ_{μ} absorption in the Earth, with statistics an order of magnitude better than previous analyses, and with an improved treatment of systematic uncertainties. It will measure the cross section in three energy bins that span the range 1 TeV to 100 PeV. We will present Monte Carlo studies that demonstrate its sensitivity

    Searching for time-dependent high-energy neutrino emission from X-ray binaries with IceCube

    Get PDF

    A time-independent search for neutrinos from galaxy clusters with IceCube

    Get PDF

    Completing Aganta Kairos: Capturing Metaphysical Time on the Seventh Continent

    Get PDF

    The Acoustic Module for the IceCube Upgrade

    Get PDF

    A Combined Fit of the Diffuse Neutrino Spectrum using IceCube Muon Tracks and Cascades

    Get PDF
    corecore