162 research outputs found

    Ice-core evidence of earliest extensive copper metallurgy in the Andes 2700 years ago

    Get PDF
    The importance of metallurgy for social and economic development is indisputable. Although copper (Cu) was essential for the wealth of pre- and post-colonial societies in the Andes, the onset of extensive Cu metallurgy in South America is still debated. Comprehensive archaeological findings point to first sophisticated Cu metallurgy during the Moche culture ~200–800 AD, whereas peat-bog records from southern South America suggest earliest pollution potentially from Cu smelting as far back as ~2000 BC. Here we present a 6500-years Cu emission history for the Andean Altiplano, based on ice-core records from Illimani glacier in Bolivia, providing the first complete history of large-scale Cu smelting activities in South America. We find earliest anthropogenic Cu pollution during the Early Horizon period ~700–50 BC, and attribute the onset of intensified Cu smelting in South America to the activities of the central Andean Chiripa and Chavin cultures ~2700 years ago. This study provides for the first time substantial evidence for extensive Cu metallurgy already during these early cultures

    Global ocean heat content in the Last Interglacial

    Get PDF
    The Last Interglacial (129-116 ka) represents one of the warmest climate intervals of the last 800,000 years and the most recent time when sea level was meters higher than today. However, the timing and magnitude of peak warmth varies between reconstructions, and the relative importance of individual sources contributing to elevated sea level (mass gain versus seawater expansion) during the Last Interglacial remains uncertain. Here we present the first mean ocean temperature record for this interval from noble gas measurements in ice cores and constrain the thermal expansion contribution to sea level. Mean ocean temperature reaches its maximum value of 1.1±0.3°C warmer-than-modern at the end of the penultimate deglaciation at 129 ka, resulting in 0.7±0.3m of elevated sea level, relative to present. However, this maximum in ocean heat content is a transient feature; mean ocean temperature decreases in the first several thousand years of the interglacial and achieves a stable, comparable-to-modern value by ~127 ka. The synchroneity of the peak in mean ocean temperature with proxy records of abrupt transitions in oceanic and atmospheric circulation suggests that the mean ocean temperature maximum is related to the accumulation of heat in the ocean interior during the preceding period of reduced overturning circulation

    Global ocean heat content in the Last Interglacial

    Get PDF
    The Last Interglacial (129–116 thousand years ago (ka)) represents one of the warmest climate intervals of the past 800,000 years and the most recent time when sea level was metres higher than today. However, the timing and magnitude of the peak warmth varies between reconstructions, and the relative importance of individual sources that contribute to the elevated sea level (mass gain versus seawater expansion) during the Last Interglacial remains uncertain. Here we present the first mean ocean temperature record for this interval from noble gas measurements in ice cores and constrain the thermal expansion contribution to sea level. Mean ocean temperature reached its maximum value of 1.1 ± 0.3 °C warmer-than-modern values at the end of the penultimate deglaciation at 129 ka, which resulted in 0.7 ± 0.3 m of thermosteric sea-level rise relative to present level. However, this maximum in ocean heat content was a transient feature; mean ocean temperature decreased in the first several thousand years of the interglacial and achieved a stable, comparable-to-modern value by ~127 ka. The synchroneity of the peak in mean ocean temperature with proxy records of abrupt transitions in the oceanic and atmospheric circulation suggests that the mean ocean temperature maximum is related to the accumulation of heat in the ocean interior during the preceding period of reduced overturning circulation

    Redefinition of the map position and validation of a major quantitative trait locus for fire blight resistance of the pear cultivar ‘Harrow Sweet’ (Pyrus communis L.)

    Get PDF
    In a previous study, a QTL analysis was conducted on a pear F1 progeny derived from a cross ‘Passe Crassane’ (PC) × ‘Harrow Sweet’ (HS). Four genomic regions associated with fire blight resistance were identified, including two main QTL located on linkage groups (LGs), 2A and 4 of ‘Harrow Sweet’ (HS02A and HS04). In the present study, we report the combination of LGs HS02A and HS02B into a single LG by mapping additional SSR loci from Malus or Pyrus spp. We could thereby precisely identify a single major QTL on LG HS02. We also confirm a putative QTL on LG HS04 by including new SSR markers to the pre-existing LG HS04. Based on SSR marker analysis of ‘Harrow Sweet’ pedigree, the major HS02 QTL is presumed to originate from the cultivar ‘Early Sweet’, while the HS04 QTL was traced from ‘Harrow Sweet’ back to ‘Bartlett’. We also describe the validation of the major HS02 QTL for the fire blight severity trait in a second F1 progeny derived from a cross ‘Angelys’ × ‘Harrow Sweet’

    From polygons and symbols to polylogarithmic functions

    Full text link
    We present a review of the symbol map, a mathematical tool that can be useful in simplifying expressions among multiple polylogarithms, and recall its main properties. A recipe is given for how to obtain the symbol of a multiple polylogarithm in terms of the combinatorial properties of an associated rooted decorated polygon. We also outline a systematic approach to constructing a function corresponding to a given symbol, and illustrate it in the particular case of harmonic polylogarithms up to weight four. Furthermore, part of the ambiguity of this process is highlighted by exhibiting a family of non-trivial elements in the kernel of the symbol map for arbitrary weight.Comment: 75 pages. Mathematica files with the expression of all HPLs up to weight 4 in terms of the spanning set are include

    Medium-term fluvial island evolution in a disturbed gravel-bed river (Piave River, Northeastern Italian Alps)

    Get PDF
    River islands are defined as discrete areas of woodland vegetation surrounded by either water-filled channels or exposed gravel. They exhibit some stability and are not submerged during bank-full flows. The aim of the study is to analyze the dynamics of established, building, and pioneer islands in a 30-km-long reach of the gravel-bed Piave River, which has suffered from intense and multiple human impacts. Plan-form changes of river features since 1960 were analyzed using aerial photographs, and a LiDAR was used to derive the maximum, minimum and mean elevation of island surfaces, and maximum and mean height of their vegetation. The results suggest that established islands lie at a higher elevation than building and pioneer islands, and have a thicker layer of fine sediments deposited on their surface after big floods. After the exceptional flood in 1966 (RI>200 years) there was a moderate increase in island numbers and extension, followed by a further increase from 1991, due to a succession of flood events in 1993 and 2002 with RI>10 years, as well as a change in the human management relating to the control of gravel-mining activities. The narrowing trend (1960-1999) of the morphological plan form certainly enhanced the chance of islands becoming established and this explains the reduction of the active channel, the increase in established islands and reduction of pioneer islands

    Habitat Assessment of Non-Wadeable Rivers in Michigan

    Full text link
    Habitat evaluation of wadeable streams based on accepted protocols provides a rapid and widely used adjunct to biological assessment. However, little effort has been devoted to habitat evaluation in non-wadeable rivers, where it is likely that protocols will differ and field logistics will be more challenging. We developed and tested a non-wadeable habitat index (NWHI) for rivers of Michigan, where non-wadeable rivers were defined as those of order ≥5, drainage area ≥1600 km 2 , mainstem lengths ≥100 km, and mean annual discharge ≥15 m 3 /s. This identified 22 candidate rivers that ranged in length from 103 to 825 km and in drainage area from 1620 to 16,860 km 2 . We measured 171 individual habitat variables over 2-km reaches at 35 locations on 14 rivers during 2000–2002, where mean wetted width was found to range from 32 to 185 m and mean thalweg depth from 0.8 to 8.3 m. We used correlation and principal components analysis to reduce the number of variables, and examined the spatial pattern of retained variables to exclude any that appeared to reflect spatial location rather than reach condition, resulting in 12 variables to be considered in the habitat index. The proposed NWHI included seven variables: riparian width, large woody debris, aquatic vegetation, bottom deposition, bank stability, thalweg substrate, and off-channel habitat. These variables were included because of their statistical association with independently derived measures of human disturbance in the riparian zone and the catchment, and because they are considered important in other habitat protocols or to the ecology of large rivers. Five variables were excluded because they were primarily related to river size rather than anthropogenic disturbance. This index correlated strongly with indices of disturbance based on the riparian (adjusted R 2 = 0.62) and the catchment (adjusted R 2 = 0.50), and distinguished the 35 river reaches into the categories of poor (2), fair (19), good (13), and excellent (1). Habitat variables retained in the NWHI differ from several used in wadeable streams, and place greater emphasis on known characteristic features of larger rivers.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41269/1/267_2004_Article_141.pd
    • …
    corecore