381 research outputs found
Effective average action in statistical physics and quantum field theory
An exact renormalization group equation describes the dependence of the free
energy on an infrared cutoff for the quantum or thermal fluctuations. It
interpolates between the microphysical laws and the complex macroscopic
phenomena. We present a simple unified description of critical phenomena for
O(N)-symmetric scalar models in two, three or four dimensions, including
essential scaling for the Kosterlitz-Thouless transition.Comment: 34 pages,5 figures,LaTe
Petrographic and chemical characterization and carbon and nitrogen isotopic compositions of cometary IDPs and their GEMS amorphous silicates
GEMS (glass with embedded metal and sulfides) are the dominant carrier of amorphous silicates in anhydrous interplanetary dust particles (IDPs) and one of the most suitable materials to study early solar system processes. Amorphous silicates in 105 GEMS from eight IDPs were analyzed regarding texture and chemical composition to reassess GEMS formation theories and genetic relationships to amorphous silicate material in meteorites. Petrography of bulk IDPs was investigated to understand GEMS’ relationships to other IDP components. Furthermore, carbon and nitrogen isotopic compositions were measured. Nearly all GEMS are aggregates of several subgrains with variable amount of nanophase inclusions and different Mg- and Si-contents, while single GEMS are rare. The subgrains within aggregates are typically surrounded by one or more carbon rims with high density. The chemical compositions of GEMS amorphous silicates are subsolar for all major element/Si ratios but exhibit wide heterogeneity. This is not influenced by silicon oil from the capturing process of IDPs as assumed before, as a penetration of the silicon oil is excluded by high resolution EELS (electron energy loss spectroscopy) areal density maps of silicon. Furthermore, low Fe-content in GEMS amorphous silicates shows that these are not altered by aqueous activity on the parent body as it is the case for amorphous silicate material in primitive meteorites. The subsolar element/Si ratios and the wide chemical heterogeneity point to a non-equilibrium fractional condensation origin either in the early solar nebula or in a circumstellar environment and are not in agreement with homogenization via sputtering in the ISM. The close association with carbon around GEMS subgrains and as double-rims around GEMS aggregates argue for a multi-step aggregation after formation of the smallest GEMS subgrains in the ISM or the early solar nebula. Carbon acting as matrix material connecting GEMS and other IDP components has lower areal density as seen from carbon EELS areal density maps and isotopic anomalies varying at the nanometer scale, pointing to different origins and processing of materials to varying extent or at changing temperatures.
To balance GEMS’ subsolar element/Si ratios, a supersolar component in IDPs was assumed to account for the overall chondritic composition of bulk IDPs. Nevertheless, our bulk IDP analyses revealed subsolar, but variable, element/Si ratios for complete particles as well, depending on type and amount of mineral phases in each particle. Pyroxenes in the investigated particles can occur as elongated euhedral crystals, but are overall rare. The dominant crystalline fraction in the investigated IDP samples are equilibrated aggregates (EAs) that show the same chemical compositions as GEMS, indicating that the EAs are recrystallized GEMS grains and formed after GEMS formation as secondary phases
Stability of condensate in superconductors
According to the BCS theory the superconducting condensate develops in a
single quantum mode and no Cooper pairs out of the condensate are assumed. Here
we discuss a mechanism by which the successful mode inhibits condensation in
neighboring modes and suppresses a creation of noncondensed Cooper pairs. It is
shown that condensed and noncondensed Cooper pairs are separated by an energy
gap which is smaller than the superconducting gap but large enough to prevent
nucleation in all other modes and to eliminate effects of noncondensed Cooper
pairs on properties of superconductors. Our result thus justifies basic
assumptions of the BCS theory and confirms that the BCS condensate is stable
with respect to two-particle excitations
Measurement of coherent charge transfer in an adiabatic Cooper pair pump
We study adiabatic charge transfer in a superconducting Cooper pair pump,
focusing on the influence of current measurement on coherence. We investigate
the limit where the Josephson coupling energy between the various parts
of the system is small compared to the Coulomb charging energy . In this
case the charge transferred in a pumping cycle , the charge of one
Cooper pair: the main contribution is due to incoherent Cooper pair tunneling.
We are particularly interested in the quantum correction to , which is due
to coherent tunneling of pairs across the pump and which depends on the
superconducting phase difference between the electrodes: . A measurement of tends to destroy the phase
coherence. We first study an arbitrary measuring circuit and then specific
examples and show that coherent Cooper pair transfer can in principle be
detected using an inductively shunted ammeter
Adiabatic spin pumping through a quantum dot with a single orbital level
We investigate an adiabatic spin pumping through a quantum dot with a single
orbital energy level under the Zeeman effect. Electron pumping is produced by
two periodic time dependent parameters, a magnetic field and a difference of
the dot-lead coupling between the left and right barriers of the dot. The
maximum charge transfer per cycle is found to be , the unit charge in the
absence of a localized moment in the dot. Pumped charge and spin are different,
and spin pumping is possible without charge pumping in a certain situation.
They are tunable by changing the minimum and maximum value of the magnetic
field.Comment: RevTeX4, 5 pages, 3 figure
Single-electron transport driven by surface acoustic waves: moving quantum dots versus short barriers
We have investigated the response of the acoustoelectric current driven by a
surface-acoustic wave through a quantum point contact in the closed-channel
regime. Under proper conditions, the current develops plateaus at integer
multiples of ef when the frequency f of the surface-acoustic wave or the gate
voltage Vg of the point contact is varied. A pronounced 1.1 MHz beat period of
the current indicates that the interference of the surface-acoustic wave with
reflected waves matters. This is supported by the results obtained after a
second independent beam of surface-acoustic wave was added, traveling in
opposite direction. We have found that two sub-intervals can be distinguished
within the 1.1 MHz modulation period, where two different sets of plateaus
dominate the acoustoelectric-current versus gate-voltage characteristics. In
some cases, both types of quantized steps appeared simultaneously, though at
different current values, as if they were superposed on each other. Their
presence could result from two independent quantization mechanisms for the
acoustoelectric current. We point out that short potential barriers determining
the properties of our nominally long constrictions could lead to an additional
quantization mechanism, independent from those described in the standard model
of 'moving quantum dots'.Comment: 25 pages, 12 figures, to be published in a special issue of J. Low
Temp. Phys. in honour of Prof. F. Pobel
Breaking of general rotational symmetries by multi-dimensional classical ratchets
We demonstrate that a particle driven by a set of spatially uncorrelated,
independent colored noise forces in a bounded, multidimensional potential
exhibits rotations that are independent of the initial conditions. We calculate
the particle currents in terms of the noise statistics and the potential
asymmetries by deriving an n-dimensional Fokker-Planck equation in the small
correlation time limit. We analyze a variety of flow patterns for various
potential structures, generating various combinations of laminar and rotational
flows.Comment: Accepted, Physical Review
An approximate renormalization-group transformation for Hamiltonian systems with three degrees of freedom
We construct an approximate renormalization transformation that combines
Kolmogorov-Arnold-Moser (KAM)and renormalization-group techniques, to analyze
instabilities in Hamiltonian systems with three degrees of freedom. This scheme
is implemented both for isoenergetically nondegenerate and for degenerate
Hamiltonians. For the spiral mean frequency vector, we find numerically that
the iterations of the transformation on nondegenerate Hamiltonians tend to
degenerate ones on the critical surface. As a consequence, isoenergetically
degenerate and nondegenerate Hamiltonians belong to the same universality
class, and thus the corresponding critical invariant tori have the same type of
scaling properties. We numerically investigate the structure of the attracting
set on the critical surface and find that it is a strange nonchaotic attractor.
We compute exponents that characterize its universality class.Comment: 10 pages typeset using REVTeX, 7 PS figure
Dissipation and noise in adiabatic quantum pumps
We investigate the distribution function, the heat flow and the noise
properties of an adiabatic quantum pump for an arbitrary relation of pump
frequency and temperature. To achieve this we start with the
scattering matrix approach for ac-transport. This approach leads to expressions
for the quantities of interest in terms of the side bands of particles exiting
the pump. The side bands correspond to particles which have gained or lost a
modulation quantum . We find that our results for the pump
current, the heat flow and the noise can all be expressed in terms of a
parametric emissivity matrix. In particular we find that the current
cross-correlations of a multiterminal pump are directly related a to a
non-diagonal element of the parametric emissivity matrix. The approach allows a
description of the quantum statistical correlation properties (noise) of an
adiabatic quantum pump
Three-dimensional coherent X-ray diffraction imaging of a ceramic nanofoam: determination of structural deformation mechanisms
Ultra-low density polymers, metals, and ceramic nanofoams are valued for
their high strength-to-weight ratio, high surface area and insulating
properties ascribed to their structural geometry. We obtain the labrynthine
internal structure of a tantalum oxide nanofoam by X-ray diffractive imaging.
Finite element analysis from the structure reveals mechanical properties
consistent with bulk samples and with a diffusion limited cluster aggregation
model, while excess mass on the nodes discounts the dangling fragments
hypothesis of percolation theory.Comment: 8 pages, 5 figures, 30 reference
- …