24,094 research outputs found

    Recurrence spectrum in smooth dynamical systems

    Full text link
    We prove that for conformal expanding maps the return time does have constant multifractal spectrum. This is the counterpart of the result by Feng and Wu in the symbolic setting

    ALPS generant tank and cell assembly

    Get PDF
    Diaphragm and balloon bladders for hydrazine expulsion in liquid propellant system and titanium tank fabricatio

    Experimental evidence for kin-biased helping in a cooperatively breeding vertebrate

    Get PDF
    The widespread belief that kin selection is necessary for the evolution of cooperative breeding in vertebrates has recently been questioned. These doubts have primarily arisen because of the paucity of unequivocal evidence for kin preferences in cooperative behaviour. Using the cooperative breeding system of long-tailed tits (Aegithalos caudatus) in which kin and non-kin breed within each social unit and helpers are failed breeders, we investigated whether helpers preferentially direct their care towards kin following breeding failure. First, using observational data, we show that not all failed breeders actually become helpers, but that those that do help usually do so at the nest of a close relative. Second, we confirm the importance of kinship for helping in this species by conducting a choice experiment. We show that potential helpers do not become helpers in the absence of close kin and, when given a choice between helping equidistant broods belonging to kin and non-kin within the same social unit, virtually all helped at the nest of kin. This study provides strong evidence that kinship plays an essential role in the maintenance of cooperative breeding in this species

    Momentum-resolved electron-phonon interaction in lead determined by neutron resonance spin-echo spectroscopy

    Get PDF
    Neutron resonance spin-echo spectroscopy was used to monitor the temperature evolution of the linewidths of transverse acoustic phonons in lead across the superconducting transition temperature, TcT_c, over an extended range of the Brillouin zone. For phonons with energies below the superconducting energy gap, a linewidth reduction of maximum amplitude 6μ\sim 6 \mueV was observed below TcT_c. The electron-phonon contribution to the phonon lifetime extracted from these data is in satisfactory overall agreement with {\it ab-initio} lattice-dynamical calculations, but significant deviations are found

    Instrumental polarisation at the Nasmyth focus of the E-ELT

    Get PDF
    The ~39-m European Extremely Large Telescope (E-ELT) will be the largest telescope ever built. This makes it particularly suitable for sensitive polarimetric observations, as polarimetry is a photon-starved technique. However, the telescope mirrors may severely limit the polarimetric accuracy of instruments on the Nasmyth platforms by creating instrumental polarisation and/or modifying the polarisation signal of the object. In this paper we characterise the polarisation effects of the two currently considered designs for the E-ELT Nasmyth ports as well as the effect of ageing of the mirrors. By means of the Mueller matrix formalism, we compute the response matrices of each mirror arrangement for a range of zenith angles and wavelengths. We then present two techniques to correct for these effects that require the addition of a modulating device at the polarisation-free intermediate focus that acts either as a switch or as a part of a two-stage modulator. We find that the values of instrumental polarisation, Stokes transmission reduction and cross- talk vary significantly with wavelength, and with pointing, for the lateral Nasmyth case, often exceeding the accuracy requirements for proposed polarimetric instruments. Realistic ageing effects of the mirrors after perfect calibration of these effects may cause polarimetric errors beyond the requirements. We show that the modulation approach with a polarimetric element located in the intermediate focus reduces the instrumental polarisation effects down to tolerable values, or even removes them altogether. The E-ELT will be suitable for sensitive and accurate polarimetry, provided frequent calibrations are carried out, or a dedicated polarimetric element is installed at the intermediate focus.Comment: Accepted for publication in A&

    Stochastic stability versus localization in chaotic dynamical systems

    Full text link
    We prove stochastic stability of chaotic maps for a general class of Markov random perturbations (including singular ones) satisfying some kind of mixing conditions. One of the consequences of this statement is the proof of Ulam's conjecture about the approximation of the dynamics of a chaotic system by a finite state Markov chain. Conditions under which the localization phenomenon (i.e. stabilization of singular invariant measures) takes place are also considered. Our main tools are the so called bounded variation approach combined with the ergodic theorem of Ionescu-Tulcea and Marinescu, and a random walk argument that we apply to prove the absence of ``traps'' under the action of random perturbations.Comment: 27 pages, LaTe

    Attosecond screening dynamics mediated by electron-localization

    Full text link
    Transition metals with their densely confined and strongly coupled valence electrons are key constituents of many materials with unconventional properties, such as high-Tc superconductors, Mott insulators and transition-metal dichalcogenides. Strong electron interaction offers a fast and efficient lever to manipulate their properties with light, creating promising potential for next-generation electronics. However, the underlying dynamics is a fast and intricate interplay of polarization and screening effects, which is poorly understood. It is hidden below the femtosecond timescale of electronic thermalization, which follows the light-induced excitation. Here, we investigate the many-body electron dynamics in transition metals before thermalization sets in. We combine the sensitivity of intra-shell transitions to screening effects with attosecond time resolution to uncover the interplay of photo-absorption and screening. First-principles time-dependent calculations allow us to assign our experimental observations to ultrafast electronic localization on d-orbitals. The latter modifies the whole electronic structure as well as the collective dynamic response of the system on a timescale much faster than the light-field cycle. Our results demonstrate a possibility for steering the electronic properties of solids prior to electron thermalization, suggesting that the ultimate speed of electronic phase transitions is limited only by the duration of the controlling laser pulse. Furthermore, external control of the local electronic density serves as a fine tool for testing state-of-the art models of electron-electron interactions. We anticipate our study to facilitate further investigations of electronic phase transitions, laser-metal interactions and photo-absorption in correlated electron systems on its natural timescale

    The color dependent morphology of the post-AGB star HD161796

    Get PDF
    Context. Many protoplanetary nebulae show strong asymmetries in their surrounding shell, pointing to asymmetries during the mass loss phase. Questions concerning the origin and the onset of deviations from spherical symmetry are important for our understanding of the evolution of these objects. Here we focus on the circumstellar shell of the post-AGB star HD 161796. Aims. We aim at detecting signatures of an aspherical outflow, as well as to derive the properties of it. Methods. We use the imaging polarimeter ExPo (the extreme polarimeter), a visitor instrument at the William Herschel Telescope, to accurately image the dust shell surrounding HD 161796 in various wavelength filters. Imaging polarimetry allows us to separate the faint, polarized, light from circumstellar material from the bright, unpolarized, light from the central star. Results. The shell around HD 161796 is highly aspherical. A clear signature of an equatorial density enhancement can be seen. This structure is optically thick at short wavelengths and changes its appearance to optically thin at longer wavelengths. In the classification of the two different appearances of planetary nebulae from HST images it changes from being classified as DUPLEX at short wavelengths to SOLE at longer wavelengths. This strengthens the interpretation that these two appearances are manifestations of the same physical structure. Furthermore, we find that the central star is hotter than often assumed and the relatively high observed reddening is due to circumstellar rather than interstellar extinction.Comment: Accepted for publication in A&
    corecore