585 research outputs found

    #cutting: non-suicidal self-injury (NSSI) on Instagram

    Get PDF
    Social media presents an important means for social interaction, especially among adolescents, with Instagram being the most popular platform in this age-group. Pictures and communication about non-suicidal self-injury (NSSI) can frequently be found on the internet. During 4 weeks in April 2016, n = 2826 (from n = 1154 accounts) pictures which directly depicted wounds on Instagram were investigated. Those pictures, associated comments, and user accounts were independently rated for content. Associations between characteristics of pictures and comments as well as weekly and daily trends of posting behavior were analyzed. Most commonly, pictures depicted wounds caused by cutting on arms or legs and were rated as mild or moderate injuries. Pictures with increasing wound grades and those depicting multiple methods of NSSI generated elevated amounts of comments. While most comments were neutral or empathic with some offering help, few comments were hostile. Pictures were mainly posted in the evening hours, with a small peak in the early morning. While there was a slight peak of pictures being posted on Sundays, postings were rather evenly spread across the week. Pictures of NSSI are frequently posted on Instagram. Social reinforcement might play a role in the posting of more severe NSSI pictures. Social media platforms need to take appropriate measures for preventing online social contagion

    Theory for the coupling between longitudinal phonons and intrinsic Josephson oscillations in layered superconductors

    Full text link
    In this publication a microscopic theory for the coupling of intrinsic Josephson oscillations in layered superconductors with longitudinal c-axis-phonons is developed. It is shown that the influence of lattice vibrations on the c-axis transport can be fully described by introducing an effective longitudinal dielectric function. Resonances in the I-V-characteristic appear at van Hove singularities of both acoustical and optical longitudinal phonon branches. This provides a natural explanation of the recently discovered subgap structures in the I-V-characteristic of highly anisotropic cuprate superconductors. The effect of the phonon dispersion on the damping of these resonances and the coupling of Josephson oscillations in different resistive junctions due to phonons are discussed in detail.Comment: submitted to Phys. Rev. B, corrections following referee repor

    On the parabolic equation method in internal wave propagation

    Get PDF
    A parabolic equation for the propagation of periodic internal waves over varying bottom topography is derived using the multiple-scale perturbation method. Some computational aspects of the numerical implementation are discussed. The results of numerical experiments on propagation of an incident plane wave over a circular-type shoal are presented in comparison with the analytical result, based on Born approximation.Comment: Submitted to Coastal Engineering. 16 pages, 5 figures. One figure was excluded from article because of size problem

    HOL-TestGen 1.8.0 User Guide

    Get PDF

    A quantitative theory-versus-experiment comparison for the intense laser dissociation of H2+

    Full text link
    A detailed theory-versus-experiment comparison is worked out for H2+_2^+ intense laser dissociation, based on angularly resolved photodissociation spectra recently recorded in H.Figger's group. As opposite to other experimental setups, it is an electric discharge (and not an optical excitation) that prepares the molecular ion, with the advantage for the theoretical approach, to neglect without lost of accuracy, the otherwise important ionization-dissociation competition. Abel transformation relates the dissociation probability starting from a single ro-vibrational state, to the probability of observing a hydrogen atom at a given pixel of the detector plate. Some statistics on initial ro-vibrational distributions, together with a spatial averaging over laser focus area, lead to photofragments kinetic spectra, with well separated peaks attributed to single vibrational levels. An excellent theory-versus-experiment agreement is reached not only for the kinetic spectra, but also for the angular distributions of fragments originating from two different vibrational levels resulting into more or less alignment. Some characteristic features can be interpreted in terms of basic mechanisms such as bond softening or vibrational trapping.Comment: submitted to PRA on 21.05.200

    Diffraction by an absorbing wedge

    Get PDF
    For the abstract of this paper, please see the PDF file

    Comment on "Resolving the 180-deg Ambiguity in Solar Vector Magnetic Field Data: Evaluating the Effects of Noise, Spatial Resolution, and Method Assumptions"

    Full text link
    In a recent paper, Leka at al. (Solar Phys. 260, 83, 2009)constructed a synthetic vector magnetogram representing a three-dimensional magnetic structure defined only within a fraction of an arcsec in height. They rebinned the magnetogram to simulate conditions of limited spatial resolution and then compared the results of various azimuth disambiguation methods on the resampled data. Methods relying on the physical calculation of potential and/or non-potential magnetic fields failed in nearly the same, extended parts of the field of view and Leka et al. (2009) attributed these failures to the limited spatial resolution. This study shows that the failure of these methods is not due to the limited spatial resolution but due to the narrowly defined test data. Such narrow magnetic structures are not realistic in the real Sun. Physics-based disambiguation methods, adapted for solar magnetic fields extending to infinity, are not designed to handle such data; hence, they could only fail this test. I demonstrate how an appropriate limited-resolution disambiguation test can be performed by constructing a synthetic vector magnetogram very similar to that of Leka et al. (2009) but representing a structure defined in the semi-infinite space above the solar photosphere. For this magnetogram I find that even a simple potential-field disambiguation method manages to resolve the ambiguity very successfully, regardless of limited spatial resolution. Therefore, despite the conclusions of Leka et al. (2009), a proper limited-spatial-resolution test of azimuth disambiguation methods is yet to be performed in order to identify the best ideas and algorithms.Comment: Solar Physics, in press (19 pp., 5 figures, 2 tables

    Transition to an Insulating Phase Induced by Attractive Interactions in the Disordered Three-Dimensional Hubbard Model

    Full text link
    We study numerically the interplay of disorder and attractive interactions for spin-1/2 fermions in the three-dimensional Hubbard model. The results obtained by projector quantum Monte Carlo simulations show that at moderate disorder, increasing the attractive interaction leads to a transition from delocalized superconducting states to the insulating phase of localized pairs. This transition takes place well within the metallic phase of the single-particle Anderson model.Comment: revtex, 4 pages, 3 figure

    Raman spectroscopy of a single ion coupled to a high-finesse cavity

    Full text link
    We describe an ion-based cavity-QED system in which the internal dynamics of an atom is coupled to the modes of an optical cavity by vacuum-stimulated Raman transitions. We observe Raman spectra for different excitation polarizations and find quantitative agreement with theoretical simulations. Residual motion of the ion introduces motional sidebands in the Raman spectrum and leads to ion delocalization. The system offers prospects for cavity-assisted resolved-sideband ground-state cooling and coherent manipulation of ions and photons.Comment: 8 pages, 6 figure
    • 

    corecore