12 research outputs found

    Inferring HIV-1 transmission networks and sources of epidemic spread in Africa with deep-sequence phylogenetic analysis

    Get PDF
    To prevent new infections with human immunodeficiency virus type 1 (HIV-1) in sub-Saharan Africa, UNAIDS recommends targeting interventions to populations that are at high risk of acquiring and passing on the virus. Yet it is often unclear who and where these ‘source’ populations are. Here we demonstrate how viral deep-sequencing can be used to reconstruct HIV-1 transmission networks and to infer the direction of transmission in these networks. We are able to deep-sequence virus from a large population-based sample of infected individuals in Rakai District, Uganda, reconstruct partial transmission networks, and infer the direction of transmission within them at an estimated error rate of 16.3% [8.8–28.3%]. With this error rate, deep-sequence phylogenetics cannot be used against individuals in legal contexts, but is sufficiently low for population-level inferences into the sources of epidemic spread. The technique presents new opportunities for characterizing source populations and for targeting of HIV-1 prevention interventions in Africa

    Phylogenetic estimation of the viral fitness landscape of HIV-1 set-point viral load.

    No full text
    Set-point viral load (SPVL), a common measure of human immunodeficiency virus (HIV)-1 virulence, is partially determined by viral genotype. Epidemiological evidence suggests that this viral property has been under stabilising selection, with a typical optimum for the virus between 10 <sup>4</sup> and 10 <sup>5</sup> copies of viral RNA per ml. Here we aimed to detect transmission fitness differences between viruses from individuals with different SPVLs directly from phylogenetic trees inferred from whole-genome sequences. We used the local branching index (LBI) as a proxy for transmission fitness. We found that LBI is more sensitive to differences in infectiousness than to differences in the duration of the infectious state. By analysing subtype-B samples from the Bridging the Evolution and Epidemiology of HIV in Europe project, we inferred a significant positive relationship between SPVL and LBI up to approximately 10 <sup>5</sup> copies/ml, with some evidence for a peak around this value of SPVL. This is evidence of selection against low values of SPVL in HIV-1 subtype-B strains, likely related to lower infectiousness, and perhaps a peak in the transmission fitness in the expected range of SPVL. The less prominent signatures of selection against higher SPVL could be explained by an inherent limit of the method or the deployment of antiretroviral therapy

    A highly virulent variant of HIV-1 circulating in the Netherlands

    No full text
    We discovered a highly virulent variant of subtype-B HIV-1 in the Netherlands. One hundred nine individuals with this variant had a 0.54 to 0.74 log(10) increase (i.e., a similar to 3.5-fold to 5.5-fold increase) in viral load compared with, and exhibited CD4 cell decline twice as fast as, 6604 individuals with other subtype-B strains. Without treatment, advanced HIV-CD4 cell counts below 350 cells per cubic millimeter, with long-term clinical consequences-is expected to be reached, on average, 9 months after diagnosis for individuals in their thirties with this variant. Age, sex, suspected mode of transmission, and place of birth for the aforementioned 109 individuals were typical for HIV-positive people in the Netherlands, which suggests that the increased virulence is attributable to the viral strain. Genetic sequence analysis suggests that this variant arose in the 1990s from de novo mutation, not recombination. with increased transmissibility and an unfamiliar molecular mechanism of virulence

    A highly virulent variant of HIV-1 circulating in the Netherlands

    No full text
    We discovered a highly virulent variant of subtype-B HIV-1 in the Netherlands. One hundred nine individuals with this variant had a 0.54 to 0.74 log(10) increase (i.e., a similar to 3.5-fold to 5.5-fold increase) in viral load compared with, and exhibited CD4 cell decline twice as fast as, 6604 individuals with other subtype-B strains. Without treatment, advanced HIV-CD4 cell counts below 350 cells per cubic millimeter, with long-term clinical consequences-is expected to be reached, on average, 9 months after diagnosis for individuals in their thirties with this variant. Age, sex, suspected mode of transmission, and place of birth for the aforementioned 109 individuals were typical for HIV-positive people in the Netherlands, which suggests that the increased virulence is attributable to the viral strain. Genetic sequence analysis suggests that this variant arose in the 1990s from de novo mutation, not recombination. with increased transmissibility and an unfamiliar molecular mechanism of virulence.Immunogenetics and cellular immunology of bacterial infectious disease
    corecore