1,104 research outputs found

    Activity of 50 Long-Period Comets Beyond 5.2 AU

    Get PDF
    Remote investigations of the ancient solar system matter has been traditionally carried out through the observations of long-period (LP) comets that are less affected by solar irradiation than the short-period counterparts orbiting much closer to the Sun. Here we summarize the results of our decade-long survey of the distant activity of LP comets. We found that the most important separation in the dataset is based on the dynamical nature of the objects. Dynamically new comets are characterized by a higher level of activity on average: the most active new comets in our sample can be characterized by afrho values >3--4 higher than that of our most active returning comets. New comets develop more symmetric comae, suggesting a generally isotropic outflow. Contrary to this, the coma of recurrent comets can be less symmetrical, ocassionally exhibiting negative slope parameters, suggesting sudden variations in matter production. The morphological appearance of the observed comets is rather diverse. A surprisingly large fraction of the comets have long, teniouos tails, but the presence of impressive tails does not show a clear correlation with the brightness of the comets.Comment: 21 pages, 4 figures, accepted for publication in A

    Extensive Spectroscopy and Photometry of the Type IIP Supernova 2013ej

    Get PDF
    We present extensive optical (UBVRIUBVRI, gâ€Črâ€Čiâ€Čzâ€Čg'r'i'z', and open CCD) and near-infrared (ZYJHZYJH) photometry for the very nearby Type IIP SN ~2013ej extending from +1 to +461 days after shock breakout, estimated to be MJD 56496.9±0.356496.9\pm0.3. Substantial time series ultraviolet and optical spectroscopy obtained from +8 to +135 days are also presented. Considering well-observed SNe IIP from the literature, we derive UBVRIJHKUBVRIJHK bolometric calibrations from UBVRIUBVRI and unfiltered measurements that potentially reach 2\% precision with a B−VB-V color-dependent correction. We observe moderately strong Si II λ6355\lambda6355 as early as +8 days. The photospheric velocity (vphv_{\rm ph}) is determined by modeling the spectra in the vicinity of Fe II λ5169\lambda5169 whenever observed, and interpolating at photometric epochs based on a semianalytic method. This gives vph=4500±500v_{\rm ph} = 4500\pm500 km s−1^{-1} at +50 days. We also observe spectral homogeneity of ultraviolet spectra at +10--12 days for SNe IIP, while variations are evident a week after explosion. Using the expanding photosphere method, from combined analysis of SN 2013ej and SN 2002ap, we estimate the distance to the host galaxy to be 9.0−0.6+0.49.0_{-0.6}^{+0.4} Mpc, consistent with distance estimates from other methods. Photometric and spectroscopic analysis during the plateau phase, which we estimated to be 94±794\pm7 days long, yields an explosion energy of 0.9±0.3×10510.9\pm0.3\times10^{51} ergs, a final pre-explosion progenitor mass of 15.2±4.215.2\pm4.2~M⊙_\odot and a radius of 250±70250\pm70~R⊙_\odot. We observe a broken exponential profile beyond +120 days, with a break point at +183±16183\pm16 days. Measurements beyond this break time yield a 56^{56}Ni mass of 0.013±0.0010.013\pm0.001~M⊙_\odot.Comment: 29 pages, 23 figures, 15 tables, Published in The Astrophisical Journa

    Long-term photometric monitoring of RR Lyr stars in M3

    Full text link
    The period-change behaviour of 134 RR Lyrae stars in the globular cluster Messier 3 (M3) is investigated on the ~120-year time base of the photometric observations. The mean period-change rates (\beta \approx 0.01 d Myr^-1) of the subsamples of variables exhibiting the most regular behaviour are in good agreement with theoretical expectations based on Horizontal-Branch stellar evolution models. However, a large fraction of variables show period changes that contradict the evolutionary expectations. Among the 134 stars studied, the period-change behaviour of only 54 variables is regular (constant or linearly changing), slight irregularities are superimposed on the regular variations in 23 cases and the remaining 57 stars display irregular period variations. The light curve of ~50 per cent of the RRab stars is not stable, i.e., these variables exhibit Blazhko modulation. The large fraction of variables with peculiar behaviour (showing light-curve modulation and/or irregular O-C variation) indicate that, probably, variables with regular period changes incompatible with their evolutionary stages also could display some kind of instability of the pulsation light curve and/or period, but the available observations have not disclosed it yet. The temporal appearence of the Blazhko effect in some stars, and the 70-90 years long regular changes preceded or followed by irregular, rapid changes of the pulsation period in some cases support this hypothesis. [...] Abstract truncated due to the limitations of astroph. See full abstract in the paper.Comment: 22 pages, 14 figures, accepted for publication in MNRA

    Extensive Spectroscopy and Photometry of the Type IIP Supernova 2013ej

    Get PDF
    We present extensive optical (UBVRI, gâ€Črâ€Čiâ€Čzâ€Č, and open CCD) and near-infrared (ZYJH) photometry for the very nearby Type IIP SN ~2013ej extending from +1 to +461 days after shock breakout, estimated to be MJD 56496.9±0.3. Substantial time series ultraviolet and optical spectroscopy obtained from +8 to +135 days are also presented. Considering well-observed SNe IIP from the literature, we derive UBVRIJHK bolometric calibrations from UBVRI and unfiltered measurements that potentially reach 2\% precision with a B−V color-dependent correction. We observe moderately strong Si II λ6355 as early as +8 days. The photospheric velocity (vph) is determined by modeling the spectra in the vicinity of Fe II λ5169 whenever observed, and interpolating at photometric epochs based on a semianalytic method. This gives vph=4500±500 km s−1 at +50 days. We also observe spectral homogeneity of ultraviolet spectra at +10--12 days for SNe IIP, while variations are evident a week after explosion. Using the expanding photosphere method, from combined analysis of SN 2013ej and SN 2002ap, we estimate the distance to the host galaxy to be 9.0+0.4−0.6 Mpc, consistent with distance estimates from other methods. Photometric and spectroscopic analysis during the plateau phase, which we estimated to be 94±7 days long, yields an explosion energy of 0.9±0.3×1051 ergs, a final pre-explosion progenitor mass of 15.2±4.2~M⊙ and a radius of 250±70~R⊙. We observe a broken exponential profile beyond +120 days, with a break point at +183±16 days. Measurements beyond this break time yield a 56Ni mass of 0.013±0.001~M⊙

    New measurements of thousand-seed weights of species in the Pannonian flora

    Get PDF
    For understanding local and regional seed dispersal and plant establishment processes and for considering the ecotypes and other forms of specific variability, hard data of locally or regionally measured traits are necessary. We provided newly measured seed weight data of 193 taxa, out of which 24 taxa had not been represented in the SID, LEDA or BiolFlor databases. Our new measurements and formerly published data of locally collected seed weight records together covers over 70% of the Pannonian flora. However, there is still a considerable lack in seed weight data of taxonomically problematic genera, even though they are represented in the Pannonian flora with a relatively high number of species and/or subspecies (e.g. Sorbus, Rosa, Rubus, Crataegus and Hieracium). Our regional database contains very sporadic data on aquatic plants (including also numerous invasive species reported from Hungary and neighbouring countries) and some rare weeds distributed in the southwestern part of the country. These facts indicate the necessity of further seed collection and measurements

    Emplacement and high-temperature evolution of gabbros of the 16.5°N oceanic core complexes (Mid-Atlantic Ridge): Insights ito the compositional variability of the lower oceanic crust

    Get PDF
    This study reports the composition of the oceanic crust from the 16.5°N region of the Mid‐Atlantic Ridge, a spreading ridge segment characterized by a complex detachment fault system and three main oceanic core complexes (southern, central, and northern OCCs). Lithologies recovered from the core complexes include both greenschist facies and weathered pillow basalt, diabase, peridotite, and gabbro, while only weathered and fresh pillow basalt was dredged from the rift valley floor. The gabbros are compositionally bimodal, with the magmatic crust in the region formed by scattered intrusions of chemically primitive plutonic rocks (i.e., dunites and troctolites), associated with evolved oxide‐bearing gabbros. We use thermodynamic models to infer that this distribution is expected in regions where small gabbroic bodies are intruded into mantle peridotites. The occurrence of ephemeral magma chambers located in the lithospheric mantle enables large proportions of the melt to be erupted after relatively low degrees of fractionation. A large proportion of the dredged gabbros reveal evidence for deformation at high‐temperature conditions. In particular, chemical changes in response to deformation and the occurrence of very high‐temperature ultramylonites (>1000 °C) suggest that the deformation related to the oceanic detachment commenced at near‐solidus conditions. This event was likely associated with the expulsion of interstitial, evolved magmas from the crystal mush, a mechanism that enhanced the formation of disconnected oxide‐gabbro seams or layers often associated with crystal‐plastic fabrics in the host gabbros. This granulite‐grade event was soon followed by hydrothermal alteration revealed by the formation of amphibole‐rich veins at high‐temperature conditions (~900 °C)

    Adsorption of CO on a Platinum (111) surface - a study within a four-component relativistic density functional approach

    Get PDF
    We report on results of a theoretical study of the adsorption process of a single carbon oxide molecule on a Platinum (111) surface. A four-component relativistic density functional method was applied to account for a proper description of the strong relativistic effects. A limited number of atoms in the framework of a cluster approach is used to describe the surface. Different adsorption sites are investigated. We found that CO is preferably adsorbed at the top position.Comment: 23 Pages with 4 figure
    • 

    corecore