21 research outputs found

    Compliant Metamaterials for Resonantly Enhanced Infrared Absorption Spectroscopy and Refractive Index Sensing

    Get PDF
    Metamaterials can be designed to operate at frequencies from the visible to the mid-IR, making these structures useful for both refractive index sensing and surface-enhanced infrared absorption spectroscopy. Here we investigate how the mechanical deformation of compliant metamaterials can be used to create new types of tunable sensing surfaces. For split ring resonator based metamaterials on polydimethylsiloxane we demonstrate refractive index sensing with figures of merit of up to 10.1. Given the tunability of the resonance of these structures through the infrared after fabrication, they are well suited for detection of the absorption signal of many typical vibrational modes. The results highlight the promise of postfabrication tunable sensors and the potential for integration

    Highly Strained Compliant Optical Metamaterials with Large Frequency Tunability

    Get PDF
    Metamaterial designs are typically limited to operation over a narrow bandwidth dictated by the resonant line width. Here we report a compliant metamaterial with tunability of Δλ ~ 400 nm, greater than the resonant line width at optical frequencies, using high-strain mechanical deformation of an elastomeric substrate to controllably modify the distance between the resonant elements. Using this compliant platform, we demonstrate dynamic surface-enhanced infrared absorption by tuning the metamaterial resonant frequency through a CH stretch vibrational mode, enhancing the reflection signal by a factor of 180. Manipulation of resonator components is also used to tune and modulate the Fano resonance of a coupled system

    Ultrafast polariton-phonon dynamics of strongly coupled quantum dot-nanocavity systems

    Get PDF
    We investigate the influence of exciton-phonon coupling on the dynamics of a strongly coupled quantum dot-photonic crystal cavity system and explore the effects of this interaction on different schemes for non-classical light generation. By performing time-resolved measurements, we map out the detuning-dependent polariton lifetime and extract the spectrum of the polariton-to-phonon coupling with unprecedented precision. Photon-blockade experiments for different pulse-length and detuning conditions (supported by quantum optical simulations) reveal that achieving high-fidelity photon blockade requires an intricate understanding of the phonons' influence on the system dynamics. Finally, we achieve direct coherent control of the polariton states of a strongly coupled system and demonstrate that their efficient coupling to phonons can be exploited for novel concepts in high-fidelity single photon generation

    Complete Coherent Control of a Quantum Dot Strongly Coupled to a Nanocavity

    Get PDF
    Strongly coupled quantum dot-cavity systems provide a non-linear configuration of hybridized light-matter states with promising quantum-optical applications. Here, we investigate the coherent interaction between strong laser pulses and quantum dot-cavity polaritons. Resonant excitation of polaritonic states and their interaction with phonons allow us to observe coherent Rabi oscillations and Ramsey fringes. Furthermore, we demonstrate complete coherent control of a quantum dot-photonic crystal cavity based quantum-bit. By controlling the excitation power and phase in a two-pulse excitation scheme we achieve access to the full Bloch sphere. Quantum-optical simulations are in good agreement with our experiments and provide insight into the decoherence mechanisms

    Two-plasmon quantum interference

    Get PDF
    Surface plasma waves on metals arise from the collective oscillation of many free electrons in unison. These waves are usually quantized by direct analogy to electromagnetic fields in free space, with the surface plasmon, the quantum of the surface plasma wave, playing the same role as the photon. It follows that surface plasmons should exhibit all the same quantum phenomena that photons do. Here, we report a plasmonic version of the Hong–Ou–Mandel experiment, in which we observe unambiguous two-photon quantum interference between plasmons, confirming that surface plasmons faithfully reproduce this effect with the same visibility and mutual coherence time, to within measurement error, as in the photonic case. These properties are important if plasmonic devices are to be employed in quantum information applications, which typically require indistinguishable particles

    On-chip architecture for self-homodyned nonclassical light

    Get PDF
    In the last decade, there has been remarkable progress on the practical integration of on-chip quantum photonic devices, yet quantum-state generators remain an outstanding challenge. Simultaneously, the quantum-dot photonic-crystal-resonator platform has demonstrated a versatility for creating nonclassical light with tunable quantum statistics thanks to a newly discovered self-homodyning interferometric effect that preferentially selects the quantum light over the classical light when using an optimally tuned Fano resonance. In this work, we propose a general structure for the cavity quantum electrodynamical generation of quantum states from a waveguide-integrated version of the quantum-dot photonic-crystal-resonator platform, which is specifically tailored for preferential quantum-state transmission. We support our results with rigorous finite-difference time-domain and quantum-optical simulations and show how our proposed device can serve as a robust generator of highly pure single- and even multiphoton states

    Coherent generation of nonclassical light on chip via detuned photon blockade

    Get PDF
    The on-chip generation of non-classical states of light is a key-requirement for future optical quantum hardware. In solid-state cavity quantum electrodynamics, such non-classical light can be generated from self-assembled quantum dots strongly coupled to photonic crystal cavities. Their anharmonic strong light-matter interaction results in large optical nonlinearities at the single photon level, where the admission of a single photon into the cavity may enhance (photon-tunnelling) or diminish (photon-blockade) the probability for a second photon to enter the cavity. Here, we demonstrate that detuning the cavity and QD resonances enables the generation of high-purity non-classical light from strongly coupled systems. For specific detunings we show that not only the purity but also the efficiency of single-photon generation increases significantly, making high-quality single-photon generation by photon-blockade possible with current state-of-the-art samples.Comment: Phys. Rev. Lett. in pres

    Self-homodyne-enabled generation of indistinguishable photons

    Get PDF
    The rapid generation of non-classical light serves as the foundation for exploring quantum optics and developing applications such as secure communications or the generation of NOON states. While strongly coupled quantum dot-photonic crystal resonator systems have great potential as non-classical light sources due to their promise of tailored output statistics, the generation of indistinguishable photons has been obscured due to the strongly dissipative nature of such systems. Here, we demonstrate that the recently discovered self-homodyne suppression technique can be used to overcome this limitation and tune the quantum statistics of transmitted light, achieving indistinguishable photon emission competitive with state-of-the-art metrics. Furthermore, our nanocavity-based platform directly lends itself to scalable on-chip architectures for quantum information
    corecore