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The rapid generation of non-classical light serves as the foundation for exploring quantum op-
tics and developing applications such as secure communication or generation of NOON-states.
While strongly coupled quantum dot-photonic crystal resonator systems have great potential as
non-classical light sources due to their promise of tailored output statistics, the generation of in-
distinguishable photons has been obscured due to the strongly dissipative nature of such systems.
Here, we demonstrate that the recently discovered self-homodyne suppression technique can be used
to overcome this limitation and tune the quantum statistics of transmitted light, achieving indistin-
guishable photon emission competitive with state-of-the-art metrics. Furthermore, our nanocavity-
based platform directly lends itself to scalable on-chip architectures for quantum information.

Understanding the interaction between light and mat-
ter is of paramount importance for exploring the pecu-
liar properties of quantum optics and utilizing them for
applications such as non-classical light generation with
implications for communication, information processing
and sensing [1–5]. In the solid-state, self-assembled quan-
tum dots (QDs) are widely used as quantum emitters
due to their strong interaction with light and ability to
be integrated into nanophotonic resonators for enhanced
light-matter interaction. Examples of quantum optical
landmark experiments with QDs are the generation of
indistinguishable photons [6–11], entangled photon pairs
[12–15] and the observation of Mollow triplets [16, 17].
For off-chip applications a high photon-extraction effi-

ciency is desirable, which can be achieved by embedding
the QD into a resonator with strong vertical emission.
For example, QDs have been embedded in micropillar
cavities [6, 7] that also Purcell enhance the emission rate
for fast photon extraction. Utilizing resonant excitation
of such structures, highly indistinguishable photon gen-
eration has recently been demonstrated [18–20]. Impor-
tantly, resonant excitation enables a high degree of in-
distinguishability due to the absence of excitation tim-
ing jitter and electric field noise that typically results
from charge fluctuations in the semiconductor environ-
ment under non-resonant excitation [8, 9].
On the other hand, for on-chip applications photonic

crystal resonators are promising. Their planar geome-
try naturally allows for coupling with on-chip structures,
including waveguides and on-chip detectors [21, 22] and
hence holds promise to realize fully-integrated quantum

† These authors contributed equally.

optical hardware. Photonic crystal resonators provide
extremely small mode volumes which enable a large en-
hancement of the light-matter interaction strength with
embedded quantum emitters [23–25]. Importantly, in
transmission geometries for on-chip resonant generation
of non-classical light can not be achieved by resonantly
exciting a QD weakly coupled to a resonator. Resonant
excitation of a weakly coupled QD-resonator system pre-
dominantly leads to coherent scattering from the cavity.
Thus, in off-chip applications with micropillars, suppress-
ing this coherent scattering while collecting emission from
the QD using cross-polarized suppression is only enabled
by a careful choice of quantum emitter structure. Specif-
ically, the structure must allow that the polarization of
the coherently scattered light is not rotated while the
polarization of the QD emission is rotated. This can be
achieved, for example, in bi-modal cavities and charge
neutral QDs that have their symmetry axis different from
the cavity and laser [26] or bi-modal cavities and charged
QDs. Instead in photonic crystals, direct transmission
of light through a strongly coupled QD-nanocavity sys-
tem can generate a range of output quantum statistics
[27–31]. However, the strongly dissipative nature of such
systems has so far obscured the generation of indistin-
guishable photons.

In this letter, we demonstrate that interference which
is intrinsic to photonic crystal cavities can be used to
overcome this strongly dissipative nature and tune quan-
tum statistics. Specifically, we show that this recently-
discovered self-homodyne suppression (SHS) effect [32]
can be used to interferometrically reject the coherent
scattering off a dissipative Jaynes-Cummings system and
isolate the non-classical component of the emitted light.
While our experimental approach is tailored to pho-
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FIG. 1. Resonantly excited strongly coupled system.

a, Schematic illustration of the QD-photonic crystal cavity
platform. b, Schematic illustration of the Jaynes-Cummings
ladder of dressed states that describes the energy level struc-
ture of a strongly coupled system. The arrows illustrate the
resonant excitation of UP1 and subsequent relaxation. c,
Cross-polarized reflectivity spectrum of the coupled quantum
dot-cavity system obtained by temperature tuning the QD
through the cavity resonance. An anticrossing of the peaks
clearly demonstrates the strong coupling. d, Typical spec-
trum for resonantly exciting UP1 with a 16 ps long pulse at
a QD-cavity detuning of ∆ = 4.5 g and in the presence of
self-homodyne suppression. The red shaded region indicates
the spectral filter used in subsequent experiments.

tonic crystal cavities, self-homodyne suppression as a tool
for engineering quantum statistics is widely applicable
to other Jaynes-Cummings systems. Here, we demon-
strate the robust and ultrafast generation of highly-
indistinguishable photons from strongly coupled quan-
tum dot-photonic crystal resonator systems with state-
of-the-art indistinguishability and generation rates. Ad-
ditionally, this approach circumvents the temperature
limit, set by phonon-dephasing, in all previous solid-state
approaches [6, 10, 11] while also facilitating on-chip inte-
gration.

The system under investigation consists of a single self-
assembled quantum dot (QD) strongly coupled to a pho-
tonic crystal L3 cavity (Fig. 1a). The resulting energy
level structure is well described by the Jaynes-Cummings
(JC) dressed states ladder. The energies of the lowest two
rungs are presented in Fig. 1b as a function of the QD-

cavity detuning ∆. They form pairs of anticrossing lines,
labelled UPn and LPn for the upper and lower polariton
of rung n, respectively. Experimentally this coupling can
be observed in detuning-dependent cross-polarized reflec-
tivity measurements (Fig. 1c) that reveal the clear anti-
crossing of the first rung [33]. As the polaritonic peaks
transition through the avoided-crossing (at ∆ = 0), they
exchange character from cavity/QD-like to QD/cavity-
like. Fitting the data results in a QD-cavity coupling
strength of g = 2π · 12.3GHz and a cavity energy decay
rate of κ = 2π · 18.4GHz.

Resonant generation of single photons in such systems
can be achieved by photon blockade [27]. Here, an ex-
citation laser tuned in resonance with the first rung is
out of resonance with higher climbs up the ladder due to
the JC anharmonicity. However, these resonances have
broad linewidths and hence appreciable overlap due to
the highly dissipative character of semiconducting sys-
tems. Nevertheless, by detuning the QD and cavity
by a few g and exciting the QD-like polariton branch,
high purity and efficiency single-photon generation has
recently been demonstrated (blue arrow in Fig. 1b) [30].
To achieve the strongest photon blockade in pulsed on-
demand applications, the pulse length has to be chosen
as a compromise that minimizes both re-excitation and
resonance overlap [31].

We now discuss photon blockade in the context of
self-homodyne suppression. Here, the suppression re-
sults from destructive interference between the light scat-
tered from the fundamental cavity mode and the con-
tinuum above-the-light-line modes, leading to Fano-like
resonances [34]. This effect can be used to significantly
suppress JC coherent scattering of the excitation laser in
detuned QD-cavity systems and extract the incoherent
spectrum [32]. To reach SHS, we optimized the excita-
tion conditions (focus and polarisation) for the suppres-
sion of coherent scattering. The pulse length is chosen
to be only 16 ps to minimize re-excitation. The resulting
spectrum (Fig. 1d) exhibits three distinct features: emis-
sion from the resonantly excited QD-like UP1, phonon-
assisted emission from the cavity-like LP1 (purple and
red arrows in Fig. 1b) and self-homodyne suppressed JC
coherently scattered laser light. The last one is strongest
on the sides of the UP1 peak due to a spectral dependence
of SHS that results from the wavelength-dependent phase
shift of the JC coherently scattered light.

To investigate the single-photon generation and pho-
ton indistinguishability under resonant excitation of UP1
(Fig. 1d), we measure photon correlations between the
outputs of a fiber-based Mach-Zehnder (MZ) interferom-
eter (Fig. 2a). Here, we excite the system with dou-
ble pulses that each have a pulse area of π (see Supple-
mentary information) and a time delay T1 = 1.9 ns that
matches the delay of the interferometer. First, we per-
form experiments without spectral filtering. The result
(Fig. 2b) is a pattern of five peaks separated by T1 and
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repeated with the repetition rate of the laser (80MHz).
Due to the quantum character of the emission, the three
centre peaks around zero time delay are attenuated [6].
Note that the asymmetry of the five peaks results from
the imperfect reflectivity to transmittivity ratios of the
second beamsplitter in the fiber-coupled implementation
(see Supplementary information for details). To quan-
titatively analyze the data we bin the counts in a time
window of 384 ps about the peaks (Fig. 2b datapoints).
A fit to the data (blue columns in Fig. 2c) allows for
extraction of the measured degree of second-order co-
herence g(2)[0] and first-order coherence |g(1)[0]| between
two subsequent pulses. The extracted values of the fit are
g(2)[0] = 0.24 ± 0.03 and |g(1)[0]|2 = 0.25 ± 0.03. In the
literature, when analyzing the attenuation of the center
peak instead of |g(1)[0]|2, a quantity v is often stated and
defined as the single-photon mode overlap. However, this
parameter v would only correspond to the single-photon
mode overlap for pulses of perfect single-photon charac-
ter (g(2)[0] = 0). The limited fidelity of the measure-
ment can be understood by recalling the emission spec-
trum presented in Fig. 1d. The imperfect suppression of
the JC coherently scattered light limits g(2)[0], while the
phonon-assisted emission from LP1 limits |g(1)[0]|2 due
to excitation timing jitter.

To increase the fidelity of indistinguishable photon gen-
eration through photon blockade, we now employ spec-
tral filtering. Therefore, we repeat the correlation mea-
surement while filtering on the UP1 emission, as indi-
cated by the red shaded region in Fig. 1d. The result of
this experiment with a filter bandwidth of 2π · 10GHz is
presented in Fig. 2d as empty diamonds. A fit (red
columns) extracts values of g(2)[0] = 0.05 ± 0.04 and
|g(1)[0]|2 = 0.96±0.05. Note that this bandwidth is much
larger than the linewidth of the UP1 emission. Therefore,
the improvements result only from eliminating imperfect
suppression of JC coherently scattered light and phonon-
assisted emission from LP1 and not from filtering with a
bandwidth smaller than spectral diffusion of the QD. In
both cases, frequency filtered and unfiltered we confirmed
the extracted values of g(2)[0] in second-order correlation
measurements and obtained similar values. Our metrics
are competitive with the best values obtained from QDs
so far [8, 9, 18, 19]. The UP1 state lifetime in our exper-
iment of 55 ps (measured at this detuning [31]) paves the
way for on-chip generation rates over an order of magni-
tude faster than bulk QDs and slightly faster than those
in micropillar resonators [18–20]. However, micropillar
resonators are optimized for photon extraction leading to
higher count rates and they also do not require spectral
filtering. Nevertheless, as discussed above the photonic
crystal platform facilitates scalable on-chip architectures
and in this platform, its near unity coupling efficiency
to waveguides matters over its emission profile. Finally,
the measurements presented here have been performed
at a relatively high temperature of approximately 30 K,
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FIG. 2. Indistinguishability measurements. a,
Schematic illustration of the setup used to extract Hong-
Ou-Mandel interference. b, Measured correlation function of
the emission using the same excitation conditions as in Fig.
1d. Due to the quantum character of the light, the ampli-
tude of the three centre peaks surrounding zero time delay
is reduced. c, Amplitudes around zero delay obtained from
binning the data presented in b with a temporal width of
384 ps about the centre of each peak (represented as diamond

datapoints). The error bars result from the
√
N variation

of the photocount distribution. Fits to the data are pre-
sented as blue columns and reveal g(2)[0] = 0.24 ± 0.03 and

|g(1)[0]|2 = 0.25±0.03. d, Same as c but under spectral filter-

ing of the emission from UP1, resulting in g(2)[0] = 0.05±0.04

and |g(1)[0]|2 = 0.96± 0.05

directly contrasting with the best previously reported
HOM interference visibility of < 40% at such a tem-
perature [11]. This difference can be understood from
interaction with the high-temperature phonon bath: In
bulk, the interaction with phonons results in dephasing
of the emission which reduces the first-order coherence.
Meanwhile in a strongly coupled system, the interaction
with phonons leads to a population transfer from UP1 to
LP1 [31], spectrally removing the dephased emission from
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the detection channel and ensuring robust high-fidelity
operation. Thus, we have investigated indistinguishable
photon generation in a dephasing regime unlike all pre-
vious experiments and found that this region is highly
beneficial for photon indistinguishability.
To corroborate our finding that the combination of

SHS and spectral filtering results in high-fidelity gener-
ation of indistinguishable photons we performed quan-
tum optical simulations (see Supplementary informa-
tion). The simulated emission spectrum using the mea-
sured system parameters and excitation with a π pulse
is presented in Fig. 3a without (blue) and with opti-
mized (black) SHS (see Supplementary information for
details). Only when including SHS is the spectrum in
extremely good qualitative agreement with the experi-
mentally measured one. To demonstrate the impact of
SHS on the single-photon character of the emission, we
simulate g(2)[0] as a function of the SHS strength without
(Fig. 3b black) and with (Fig. 3b red) spectral filtering of
the emission from UP1 . Here, the parameter α denotes
the intensity of the continuum-mode scattered contribu-
tion. In both cases, a clear dip in values of g(2)[0] very
close to the measured values is obtained, with much lower
g(2)[0] for the filtered system. Moreover, at the point of
best suppression, the simulations reveal that the average
number of photons exiting the system per pulse is unity.
To investigate photon indistinguishability, we calculate

the second-order cross correlation g
(2)
HOM [0] discussed in

the original Hong-Ou-Mandel (HOM) paper [35]. Here,
correlations between the output ports of a beamsplitter
are simulated while two identical systems feed the input
ports. It is important to note that in contrast to the
often-confused statements in the literature, in this con-

figuration the dip in the correlation g
(2)
HOM [0] is different

than the dip of the center peak of the Fig. 2a MZ imple-
mentation (see Supplementary information for details).
This distinction is important because the MZ scheme is
now predominantly used to experimentally characterize
single-photon source indistinguishability in our and other
experiments. Here, an important result of our work is
that the HOM configuration shows a dip of

g
(2)
HOM [0] =

1

2
g(2)[0] +

1

2

[

1− |g(1)[0]|2
]

(1)

while the MZ zero delay dip reduces to:

g
(2)
MZ [0] =

2

3
g(2)[0] +

1

3

[

1− |g(1)[0]|2
]

(2)

Therefore, the two are equal only for g(2)[0] = 0 and
g(1)[0] = 1. To visualize this difference, we look at our
experimentally obtained values of g(2)[0] and |g(1)[0]|2
discussed above. For the frequency filtered case we ob-

tain g
(2)
HOM [0] = 0.045±0.045 and g

(2)
MZ [0] = 0.047±0.043

while for the unfiltered case we obtain g
(2)
HOM [0] = 0.495±

0.03 and g
(2)
MZ [0] = 0.41 ± 0.03. In the filtered case, the
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FIG. 3. Quantum optical simulations. a, Simulated spec-
trum for resonant excitation of UP1 by a 16 ps long π pulse
at a QD-cavity detuning ∆ = 4.5 g, with and without SHS.
b, g(2)[0] (second-order coherence) for the excitation condi-
tions of a (resonant excitation of UP1) as a function of the
SHS tuning parameter with and without spectral filtering on

UP1 (red region in a). c-d, g
(2)
HOM

[0] as a function of the fil-
tering wavelength excluding (c) and including (d) SHS. Only
the central wavelength of the filer changes, but bandwidth re-
mains the same. The shaded area below the curves visualizes
1
2
(1−|g(1)[0]|2) while the white area visualizes 1

2
g(2)[0]. Green

lines denote the nonclassical threshold. All wavelengths are
referenced to that of the bare cavity.

difference is small due to the comparable values of g(2)[0]
and 1 − |g(1)[0]|2 but in the unfiltered case the differ-
ence is significant. Nevertheless, when extracting g(2)[0]
and |g(1)[0]|2, it is possible to directly compare the val-
ues obtained from the two different methods, as well as
simulations and experiment.

The results of the HOM simulations are presented in
Figs 3c and 3d excluding and including SHS, respec-

tively. The figures show g
(2)
HOM [0] against the filtering

wavelength, as solid lines. The area below the line is
decomposed into 1

2 (1 − |g(1)[0]|2) (shaded) and 1
2g

(2)[0]
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(white). Without SHS only a weak dip at the wavelength
of LP1 is observed. However, it is barely nonclassical
since at this wavelength the emission is phonon-mediated
and, thus, subject to strong excitation timing jitter which
is reflected in the low value of |g(1)[0]|2. In contrast,
when including SHS, a strong dip at the filtered wave-
length of UP1 is observed with values of g(2)[0] = 0.05
and |g(1)[0]|2 = 0.86, in excellent agreement with the ex-
perimentally measured values.
In summary, we have demonstrated that the self-

homodyne technique can be used to interferometrically
tune the output quantum statistics of Jaynes-Cummings
systems. In particular, we showed that strongly coupled
QD-photonic crystal nanocavity systems are capable of
robust and high-fidelity generation of indistinguishable
photons even at elevated temperatures, by combining
resonant excitation, self-homodyne suppression and spec-
tral filtering. Having produced indistinguishable photons
from a state with a lifetime of only 55 ps, our results could
pave the way for sources with unprecedented rates. More-
over, the short lifetime leads to a homogeneous linewidth
of the emission which is much larger than that of bulk
QDs. Therefore, we expect the indistinguishability to be
unaffacted by spectral diffusion of the quantum emitter
even without active suppression of the spectral diffusion
[36–38]. Specifically, in contrast to bulk QDs [8, 11] we
expect a similarly high indistinguishability for excitation
pulses with a longer time delay or for measurements in-
terfering the emission from multiple systems. Further-
more, the generation of indistinguishable photons from
strongly coupled QD-photonic crystal systems enables
scalable on-chip architectures. While in our case the po-
sitioning of the QD relative to the cavity has been done
probabilistically, recent progress in site-selective growth
of QDs [39, 40] as well as positioning of resonators rela-
tive to QDs [10, 18, 20] provides further support for the
feasibility of integrated quantum photonic circuits. Fi-
nally, the demonstration of the self-homodyne technique
to isolate the quantum character of resonantly scattered
light paves the way for photon bundling [29] at signif-
icantly lower nonlinearity-cavity detunings and smaller
powers for high-throughput generation of other nonclas-
sical states of light.
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SUPPLEMENTAL MATERIAL

METHODS

Sample fabrication: The MBE-grown structure con-
sists of an ≈ 900 nm thick Al0.8Ga0.2As sacrificial layer
followed by a 145 nm thick GaAs layer that contains a
single layer of InAs QDs. Our growth conditions result
in a typical QD density of (60−80)µm−2. Using 100 keV
e-beam lithography with ZEP resist, followed by reactive
ion etching and HF removal of the sacrificial layer, we
define the photonic crystal cavity. The photonic crys-
tal lattice constant was a = 246 nm and the hole ra-
dius r ≈ 60 nm. The cavity fabricated is a linear three-
hole defect (L3) cavity with a measured quality factor of
Q = 17700. To improve the cavity quality factor, holes
adjacent to the cavity were shifted [41, 42].

Optical spectroscopy: All optical measurements
were performed with a liquid helium flow cryostat at tem-
peratures in the range 10− 40K. For excitation and de-
tection a microscope objective with a numeric aperture
of NA = 0.75 was used. Cross-polarised measurements
were performed using a polarising beam splitter. To fur-
ther enhance the extinction ratio, additional thin film
linear polarisers were placed in the excitation/detection
pathways and a single mode fibre was used to spatially
filter the detection signal. Furthermore, two waveplates
were placed between the beamsplitter and microscope ob-
jective: a half-wave plate to rotate the polarisation rel-
ative to the cavity and a quarter-wave plate to correct
for birefringence of the optics and sample itself. We es-
timate our overall efficiency to be ∼ 0.125%, including
setup losses and detector efficiency. Excluding the detec-
tor efficiency this corresponds to a collection efficiency
into the detection single mode fiber of ∼ 0.5%

Correlation measurements: Second-order autocor-
relation measurements were performed using a Hanbury
Brown and Twiss (HBT) setup consisting of one fibre
beamsplitter and two single-photon avalanche diodes.
The detected photons were correlated with a Pico-
Harp300 time counting module. Two-photon interference
measurements were performed with the same detectors
and electronics as the second-order correlation measure-
ments but with a Mach-Zehnder interferometer replacing
the single beamsplitter, as discussed in the main text. For
the unfiltered two-photon interference measurements the
integration time was 30 minutes and the coincidence rate
(in the whole histogram) was 2336/s. For the frequency
filtered two-photon interference measurements the inte-
gration time was 8.6 hours and the coincidence rate (in
the whole histogram) was 22/s.

DETAILS ON THE SIMULATIONS

The quantum-optical simulations were performed us-
ing density matrix master equations with the Quan-
tum Optics Toolbox in Python (QuTiP)[43], where the
standard[44] Jaynes-Cummings model was used as a
starting point. The effects of phonons were incorporated
through the addition of incoherent decay channels with
rates that were previously extracted[31].
To simulate the first order spectra of our system under

excitation with a single pulse, we compute the one-sided
spectrum

S(ω) = Re

[
∫∫

R2

dt dτ e−iωτ 〈A†(t+ τ)A(t)〉
]

(3)

of the free-field mode operator A(t). Input-output the-
ory can relate the internal cavity mode operator a(t) to
the external field operator by the radiative cavity field
decay rate κ/2. Hence, for a JC system in the solid
state where the QD radiative decay rate γ plays an in-
significant role compared to κ[31], spectral decomposi-
tion of the cavity mode operator yields the spectrum of
the detected light. Therefore, we can compute an un-
normalised version of this spectrum with A(t) → a(t) in
equation (1). We can also compute an unnormalised ver-
sion of the incoherent spectrum with 〈A†(t+ τ)A(t)〉 →
〈A†(t + τ)A(t)〉 − 〈A†(t + τ)〉〈A(t)〉 in equation (1). To
arrive at the version measured by a spectrometer of finite
bandwidth, we convolve S(ω) with the spectrometer’s re-
sponse function. To simulate self-homodyne suppression
(SHS), we replace A(t) → a(t) + α(t) in equation (1).
Physically, α(t) is a slightly phase- and amplitude- shifted
version of the incident laser pulse (originating from the
continuum-mode scattering)[32].
In order to simulate the normalised measured de-

gree of second-order coherence, g(2)[0] = G(2)[0]
N2 with

N =
∫

R
dt〈A†(t)A(t)〉, we calculate

g(2)[0] =

∫∫

R2 dt dτ〈T−[A†(t)A†(t+ τ)]T+[A(t+ τ)A(t)]〉
(∫

R
dt〈A†(t)A(t)〉

)2

(4)
under excitation by a single pulse[30]. The operators
T± indicate the time ordering required of a physical
measurement[45]. We can likewise replace A(t) → a(t) in
equation (2) and also model SHS with the replacement of
A(t) → a(t)+α(t) in equation (2). Despite the simplicity
of equation (1), adding spectral filtering to equation (2)
is analytically and numerically quite challenging. The
spectral decomposition of this equation requires a fourth
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order integral that is often intractable even numerically.
Fortunately, the newly discovered sensor formalism[45]
allows for efficient calculation of the spectrally filtered
version of the measured degree of second-order coherence.
Here, we coherently attach a pair of two-level sensors to
the system Hamiltonian with the addition of the sensor
Hamiltonian to the Jaynes-Cummings Hamiltonian:

H = HJC +
2

∑

i=1

[

ωsς
†
i ςi + ǫ

(

aς†i + a†ςi

)]

(5)

where ωs is the sensor frequency, ς the sensor annihilation
operator, and ǫ the sensor coherent coupling strength.
The sensor coupling is chosen small enough so that its

backaction on the system is negligible, i.e. ǫ2

Γ/2 ≪ γf
where γf is the fastest transition rate in the un-sensed
system. Additionally, the sensor decay terms of rate Γ are
added to the total Liouvillian. Here, in order to simulate
SHS, we replace

aς†i + a†ςi → (a+ 〈α(t)〉) · ς†i +
(

a† + 〈α∗(t)〉
)

· ςi (6)

in equation (3).
To arrive at the physically measured and spectrally fil-

tered second-order coherence functions, the total degree
of second-order coherence is computed between the two
sensors:

g(2)[0] =

∫∫

R2 dt dτ〈T−[ς†1(t)ς†2(t+ τ)]T+[ς1(t+ τ)ς2(t)]〉
(

∫

R
dt〈ς†1(t)ς1(t)〉

)2

(7)
As the sensors are degenerate in every manner, the or-
dering of their operation is arbitrary. In our model, the
sensors are used as filters while the detector is assumed
to be sufficiently broad-band to integrate the correlations
over our entire experimental domain. This approxima-
tion is accurate as the detector has a timing resolution
of greater than 200 ps compared with the system decay
time of approximately 65 ps. Additionally, we integrate
our data over ≈ 400 ps bins.

SIMULATED POWER-DEPENDENT SPECTRA

We began our simulations by computing the incoher-
ent power spectrum to find the π pulse driving power. As
all experiments were performed with a π pulse driving,
we wanted to ensure an accurate match with simulations.
Since the Rabi oscillations are clearly present in the in-
coherent spectrum without having to optimise SHS, this
served as a simple way to verify the π pulse power. The
result of such a simulation is presented in Fig. 4 for a
resonant excitation of UP1 with 16 ps short pulses at a
QD-cavity detuning of ∆ = 4.5g. For this detuning, the
forward (UP1 to LP1) and reverse (LP1 to UP1) phonon-
assisted transfer rates are 2π · 2.4GHz and 2π · 2.2GHz
respectively.
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FIG. 4. Incoherent spectra. Power dependent spectra for
resonantly exciting UP1 with 16 ps short pulses at a QD-cavity
detuning of ∆ = 4.5 g.

Note that after optimizing SHS, a nearly identical sim-
ulation of the measured spectrum is observed (see main
text). For both UP1 and LP1 Rabi oscillations are
observed and the pulse area for a π pulse is close to
√

π
2

∆
2gτp

where τp is the width parameter of the Gaussian

pulse. This analytic result comes from truncating the de-
tuned Jaynes-Cummings level structure and calculating
the Raman transition frequency between the lowest-lying
levels[32]. From there, the π pulse driving strength is
given approximately by integrating the pulse area - the
exact drive area is difficult to analytically calculate due
to the nonlinear damping of the system.

HONG-OU-MANDEL INTERFERENCE

We first review interference in a Hong-Ou-Mandel
(HOM) interferometer. In such an interferometer, two
identically independent sources are interfered on two de-
tectors by the action of a single beamsplitter. This setup
is shown schematically in Fig. 5. Here, we consider two
strongly coupled systems each driven with the same pulse
Ω(t). Their outputs, the Heisenberg free-field operators
a(t) and b(t), are then fed into the beamsplitter which
mixes the two according to the unitary transformation

[

c(t)
d(t)

]

=
1√
2

[

1 −1
1 1

] [

a(t)
b(t)

]

(8)

The detection events are then correlated electroni-
cally to arrive at a temporal coincidence histogram
E[nc[t1]nd[t2]]. In terms of the instantaneous correlations
aforementioned, we wish to calculate E[nc[t1]nd[t2]] =

G
(2)
cd [0]. In order to perform this calculation, we first de-

compose the underlying correlations of G
(2)
cd (t1, t2) into
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Correlator

FIG. 5. Schematic of the Hong-Ou-Mandel interferometer. In this interferometer, two driven strongly coupled sys-
tems are interfered on two detectors by a beamsplitter. A digital recorder then correlates the detection times and computes
E[nc[t1]nd[t2]]. Here, Ω(t) indicates the coherent driving field, a(t) and b(t) indicate the continuous mode free-field operators
at the outputs of the driven systems, and c(t) and d(t) indicate the free-field operators at the inputs to the detectors.

Correlator

vac
Delay

FIG. 6. Schematic of the Mach-Zehnder interferometer. In this interferometer, a single driven strongly coupled system
is doubly excited at an interval of T = 1.9 ns, to be interfered with a time-delayed copy of itself. Importantly, the re-excitation
only occurs after all excited population from the first pulse has decayed, so that the operator a′(t) is identically independent
between excitations. The vacuum mode operator at the input to the first beamsplitter has been omitted in anticipation that our
detectors only measure a normally ordered moment of their input fields. A digital recorder then again correlates the detection
times and computes E[nc′ [t1]nd′ [t2]]. Here, Ω′(t) = Ω(t) + Ω(t− T ) indicates the coherent driving field, a′(t) = a(t) + a(t− T )
indicates the continuous mode free-field operator at the output of the driven system, and c′(t) and d′(t) indicate the free-field
operators at the inputs to the detectors.

more manageable components based on a(t) and b(t) that
will allow us to average over all quickly varying phase
terms. The phase terms are difficult to observe experi-
mentally since they depend on femtosecond phase lock-
ing and are, regardless, not required for the observation
of two-photon interference. It has been shown that after
performing this procedure[46] one arrives at

G
(2)
cd (t1, t2) =

1

2
G(2)

a (t1, t2)

+
1

2

[

G(1)
a (t1, t1) ·G(1)

a (t2, t2)−
∣

∣

∣
G(1)

a (t1, t2)
∣

∣

∣

2
]

(9)

where the correlations between c(t) and d(t) have terms
only coming from a single source (the indices could be
trivially switched as a(t) and b(t) are identically indepen-
dent). Experimentally due to unknown detection efficien-
cies, our only true intensity reference is in proportion to
the source correlation N2

a . Combining this information
with the discussion on detector bandwidth above, we are
justified to compute only the integrated and normalised
correlation

g
(2)
HOM[0] =

1

2
g(2)a [0] +

1

2

[

1−
∣

∣

∣
g(1)a [0]

∣

∣

∣

2
]

(10)

referenced in the main text (equation [1]). Hence the ob-
servable HOM interference for indentically independent
sources simply consists of an instantaneous measurement
that depends on the total first- and second-order coher-
ence of the source. Whether this interference is truly just
two-photon interference therefore depends on the nature
of the source output. Additionally, we note that in many
real systems the first-order coherence extracted here is
wildly different than the first-order coherence extracted
from a Michelson interferometer due to the long-time av-
eraging action of the Michelson interferometer.

MACH-ZEHNDER INTERFERENCE

Experimentally, producing a single source of indistin-
guishable photons is often quite challenging (let alone
two), however we would still like to characterise the
source’s instantaneous degree of first order coherence.
By doing so, we hope to quantify how it would be-
have in a HOM experiment. It was realised that some
aspect of two-photon interference can be observed for
a single source at the input to a Mach-Zehnder (MZ)
interferometer[6]. In order to observe this interference,
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the system must be doubly excited at a time interval
that matches the temporal delay between the two paths
of the MZ interferometer (shown schematically in Fig. 6).
Additionally, this interval must be long enough that the
emission resulting from the two excitations is identically
independent.
For perfect single photon input the MZ output correla-

tion is in fact two-photon interference and thus equivalent
to HOM interference. However, in may cases the litera-
ture has incorrectly compared the two when the source
has some finite probability of emitting non-single pho-
tons. Thus, we now outline the derivation of the cor-
rect measured correlation, as discussed in the main text
(equation [2]). Consider the schematic in Fig. 6: A sin-
gle strongly coupled system is driven with the coherent
driving field Ω′(t) = Ω(t) + Ω(t− T ) and has field-mode
operator output a′(t) = a(t) + a(t− T ). The first beam-
splitter simply splits a′(t) in two. Here we have dropped
the vacuum operator in anticipation that our detectors
only measure a normally ordered moment of their input
fields. Next, one path is delayed by the excitation in-
terval T = 1.9 ns. The second beamsplitter then mixes
1√
2
a′(t) with the time delayed version of itself and the

detection apparatus computes E[nc′ [t1]nd′ [t2]] = G
(2)
c′d′ [0]

like before.
The time delay is absolutely critical: the purpose is

that for time delays much less than T , 1√
2
a′(t) can in-

terfere with itself, and therefore reproduce a correlation
similar to the HOM cross-correlation. Although com-

putation of g
(2)
c′d′ [0] in terms of source correlations cer-

tainly appears daunting, the independence of a′(t) for
times greater than T dramatically simplifies the calcula-

tion of g
(2)
c′d′ [0]. This expansion is further simplified by

consideration of the correlations centred around time de-
lays that are integer multiples of T . It is fairly trivial to
show that the majority of terms for delays larger than
T are zero, with only a few additional phase-dependent
terms arising. We note that although one might expect
the correlations to be phase locked by the MZ interferom-
eter, our integration times of many hours quickly destroy
the phase interference. Since these terms once again play
no role in two-photon interference, we made no effort to
further stabilise our setup to observe them.
Consider the correlations about zero delay: a′(t) and

its time delayed version are statistically independent so
equation (7) holds but with the source correlations of
a′(t) instead of a(t). Because the source is doubly excited
the ratio of the correlations in terms of a(t) is altered,
which can easily be seen by applying the above rules.
Now, we arrive at the measured degree of correlation

G
(2)
c′d′ [0] = G(2)

a [0] +
1

2

[

N2
a −

∣

∣

∣
G(1)

a [0]
∣

∣

∣

2
]

(11)

choosing instead to normalise to the maximum value of
this expression we arrive at the equation discussed in the

main text

g
(2)
MZ [0] =

2

3
g(2)a [0] +

1

3

[

1−
∣

∣

∣
g(1)a [0]

∣

∣

∣

2
]

(12)

Next, we discuss the influence of non-equal splitting
ratios at the beamsplitters to arrive at the correlations
comprising each of the five observed peaks. As presented
in the main text, we built our Mach-Zehnder (MZ) in-
terferometer from fiber-coupled beam splitters and po-
larisation maintaining fibers. While this realization of a
MZ interferometer is very stable, the commercially avail-
able fiber-coupled beam splitters have an imperfect trans-
mittivity (T ) to reflectivity (R) ratio that deviates from
50 : 50. Therefore, we need to derive the amplitudes of
the five peak pattern observed in the correlation measure-
ments with the individual transmitivities and reflectivi-
ties of the first beamsplitter (T1, R1) and second beam-
splitter (T2, R2) included. Both of our beamsplitters have
a T : R ratio of 0.56 : 0.44. The transmitted component
at the first beamsplitter is sent to the longer arm of the
interferometer. Importantly, since this delay is realised
with an additional fiber there is an additional coupling
loss resulting in an effective splitting ratio of the first
beamsplitter of T1 = R1 = 0.44 = B. Then, the ampli-
tudes of the five peaks in the correlation measurements
with SPCM2 as start and SPCM1 as stop are given by:

A1 = AB2 R2
2 (13)

A2 = AB2
(

2R2T2 + 2R2
2g

(2)
a [0]

)

(14)

A3 = AB2
(

4R2T2g
(2)
a [0] +

(

R2
2 + T 2

2 − 2|g(1)a [0]|2R2T2

))

(15)

A4 = AB2
(

2R2T2 + 2T 2
2 g

(2)
a [0]

)

(16)

A5 = AB2 T 2
2 (17)

where A is the absolute amplitude. These equations can
now be used to fit the measured data. We determine
AB2 from fitting a number of peaks away from zero time

delay using g
(2)
a [0] = 1 and |g(1)a [0]|2 = 0, followed by

fitting the five peaks around zero time delay. Note that
when binning the data also an extremely weak dark-count
noise was subtracted.
A binned version of the frequency filtered two-photon

interference measurements was presented in Fig. 2d of
the main text. For completeness, the raw data of this
measurement is presented in Fig. 7.

LOWER LIMIT OF G(2)[0]

Finally, we discuss the non-zero value of g(2)[0]. For
strongly coupled QD-cavity systems g(2)[0] strongly de-
pends on the pulse length, which has to be chosen as a
compromise between re-excitation during the presence of
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FIG. 7. Two photon interference. Raw data of the fre-
quency filtered MZ measurements.
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FIG. 8. Influence of pulse length. Simulation of g(2)[0]
obtained from a two-level system under resonant excitation
with π pulses of variable length.

the pulse and spectral overlap of the laser with higher
climbs up the JC ladder [31]. However, when using
SHS and frequency filtering the situation simplifies and
becomes identical to that of a two-level system, where
the only limitation is re-excitation which is determined
by the pulse length. To visualize this dependence, we
present in Fig. 8 a simulation of g(2)[0] obtained from a
two-level system under resonant excitation with π pulses
as a function of the pulse length. Clearly, g(2)[0] increases
with pulse length and very small values are only reached
for pulses that are much shorter than the state lifetime.


