38 research outputs found
Random researches: my encounter with Ildefonso MartĂnez y Fernández
En España los mĂ©dicos representaron un papel importante en el desarrollo de una nueva cultura polĂtica liberal a raĂz de la Guerra de la Independencia. Durante la primera mitad del siglo XIX, los mĂ©dicos se movilizaron a travĂ©s de las asociaciones profesionales, la prensa mĂ©dica y diversas actividades literarias para abogar por la reforma social y polĂtica. En general, estos esfuerzos reclaman más atenciĂłn por parte de los historiadores, especialmente las contribuciones de Ildefonso MartĂnez y Fernández, que merecerĂan un estudio más detenido.In Spain physicians played an important role in the development of a new liberal political culture in the wake of the Spanish War of Independence. During the first half of the nineteenth century, physicians mobilized via professional associations, the medical press, and various literary pursuits to advocate for social and political reform. These efforts in general deserve more attention from historians, and in particular, the contributions of Ildefonso MartĂnez y Fernández warrant further study.Biblioteca HistĂłrica MarquĂ©s de ValdecillaUCM. BibliotecaTRUEsubmitte
Approaches for advancing scientific understanding of macrosystems
The emergence of macrosystems ecology (MSE), which focuses on regional- to continental-scale ecological patterns and processes, builds upon a history of long-term and broad-scale studies in ecology. Scientists face the difficulty of integrating the many elements that make up macrosystems, which consist of hierarchical processes at interacting spatial and temporal scales. Researchers must also identify the most relevant scales and variables to be considered, the required data resources, and the appropriate study design to provide the proper inferences. The large volumes of multi-thematic data often associated with macrosystem studies typically require validation, standardization, and assimilation. Finally, analytical approaches need to describe how cross-scale and hierarchical dynamics and interactions relate to macroscale phenomena. Here, we elaborate on some key methodological challenges of MSE research and discuss existing and novel approaches to meet them
Macrosystems ecology: Understanding ecological patterns and processes at continental scales
Macrosystems ecology is the study of diverse ecological phenomena at the scale of regions to continents and their interactions with phenomena at other scales. This emerging subdiscipline addresses ecological questions and environmental problems at these broad scales. Here, we describe this new field, show how it relates to modern ecological study, and highlight opportunities that stem from taking a macrosystems perspective. We present a hierarchical framework for investigating macrosystems at any level of ecological organization and in relation to broader and finer scales. Building on well-established theory and concepts from other subdisciplines of ecology, we identify feedbacks, linkages among distant regions, and interactions that cross scales of space and time as the most likely sources of unexpected and novel behaviors in macrosystems. We present three examples that highlight the importance of this multiscaled systems perspective for understanding the ecology of regions to continents
Iterative Near-Term Ecological Forecasting: Needs, Opportunities, And Challenges
Two foundational questions about sustainability are “How are ecosystems and the services they provide going to change in the future?” and “How do human decisions affect these trajectories?” Answering these questions requires an ability to forecast ecological processes. Unfortunately, most ecological forecasts focus on centennial-scale climate responses, therefore neither meeting the needs of near-term (daily to decadal) environmental decision-making nor allowing comparison of specific, quantitative predictions to new observational data, one of the strongest tests of scientific theory. Near-term forecasts provide the opportunity to iteratively cycle between performing analyses and updating predictions in light of new evidence. This iterative process of gaining feedback, building experience, and correcting models and methods is critical for improving forecasts. Iterative, near-term forecasting will accelerate ecological research, make it more relevant to society, and inform sustainable decision-making under high uncertainty and adaptive management. Here, we identify the immediate scientific and societal needs, opportunities, and challenges for iterative near-term ecological forecasting. Over the past decade, data volume, variety, and accessibility have greatly increased, but challenges remain in interoperability, latency, and uncertainty quantification. Similarly, ecologists have made considerable advances in applying computational, informatic, and statistical methods, but opportunities exist for improving forecast-specific theory, methods, and cyberinfrastructure. Effective forecasting will also require changes in scientific training, culture, and institutions. The need to start forecasting is now; the time for making ecology more predictive is here, and learning by doing is the fastest route to drive the science forward
Approaches to advance scientific understanding of macrosystems ecology
The emergence of macrosystems ecology (MSE), which focuses on regional- to continental-scale ecological pat- terns and processes, builds upon a history of long-term and broad-scale studies in ecology. Scientists face the difficulty of integrating the many elements that make up macrosystems, which consist of hierarchical processes at interacting spatial and temporal scales. Researchers must also identify the most relevant scales and variables to be considered, the required data resources, and the appropriate study design to provide the proper inferences. The large volumes of multi-thematic data often associated with macrosystem studies typically require valida- tion, standardization, and assimilation. Finally, analytical approaches need to describe how cross-scale and hierarchical dynamics and interactions relate to macroscale phenomena. Here, we elaborate on some key methodological challenges of MSE research and discuss existing and novel approaches to meet them
Genetic frontiers for conservation:An assessment of synthetic biology and biodiversity conservation
In recent years synthetic biology has emerged as a suite of techniques and technologies that enable humans to read, interpret, modify, design and manufacture DNA in order to rapidly influence the forms and functions of cells and organisms, with the potential to reach whole species and ecosystems. As synthetic biology continues to evolve, new tools emerge, novel applications are proposed, and basic research is applied. This assessment is one part of IUCN’s effort to provide recommendations and guidance regarding the potential positive and negative impacts of synthetic biology on biodiversity conservation; it comprises a full assessment and a short synthesis report
Spatial and temporal dynamics of fucoid populations (Ascophyllum nodosum and Fucus serratus): A comparison between central and range edge populations
Persistence of populations at range edges relies on local population dynamics and fitness, in the case of geographically isolated populations of species with low dispersal potential. Focusing on spatial variations in demography helps to predict the long-term capability for persistence of populations across the geographical range of species' distribution. The demography of two ecological and phylogenetically close macroalgal species with different life history characteristics was investigated by using stochastic, stage-based matrix models. Populations of Ascophyllum nodosum and Fucus serratus were sampled for up to 4 years at central locations in France and at their southern range limits in Portugal. The stochastic population growth rate (lambda(s)) of A. nodosum was lower and more variable in central than in southern sites whilst for F. serratus this trend was reversed with lambda(s) much lower and more variable in southern than in central populations. Individuals were larger in central than in southern populations for both species, which was reflected in the lower transition probabilities of individuals to larger size classes and higher probability of shrinkage in the southern populations. In both central and southern populations elasticity analysis (proportional sensitivity) of population growth rate showed that fertility elements had a small contribution to lambda(s) that was more sensitive to changes in matrix transitions corresponding to survival. The highest elasticities were found for loop transitions in A. nodosum and for growth to larger size classes in F. serratus. Sensitivity analysis showed high selective pressure on individual growth for both species at both locations. The results of this study highlight the deterministic role of species-specific life-history traits in population demography across the geographical range of species. Additionally, this study demonstrates that individuals' life-transitions differ in vulnerability to environmental variability and shows the importance of vegetative compared to reproductive stages for the long-term persistence of populations.Portuguese Foundation for Science and Technology (FCT) [SFRH/BPD/75843/2011]; European Regional Development Fund (ERDF) through the COMPETE - Operational Competitiveness Programme; FCT [Pest-CIMAR LA 0015/2013, EXCL/AAG-GLO/0661/2012
Recommended from our members
Invasive mammal eradication on islands results in substantial conservation gains
More than US$21 billion is spent annually on biodiversity conservation. Despite their importance for preventing or slowing extinctions and preserving biodiversity, conservation interventions are rarely assessed systematically for their global impact. Islands house a disproportionately higher amount of biodiversity compared with mainlands, much of which is highly threatened with extinction. Indeed, island species make up nearly two-thirds of recent extinctions. Islands therefore are critical targets of conservation. We used an extensive literature and database review paired with expert interviews to estimate the global benefits of an increasingly used conservation action to stem biodiversity loss: eradication of invasive mammals on islands. We found 236 native terrestrial insular faunal species (596 populations) that benefitted through positive demographic and/or distributional responses from 251 eradications of invasive mammals on 181 islands. Seven native species (eight populations) were negatively impacted by invasive mammal eradication. Four threatened species had their International Union for the Conservation of Nature (IUCN) Red List extinction-risk categories reduced as a direct result of invasive mammal eradication, and no species moved to a higher extinction-risk category. We predict that 107 highly threatened birds, mammals, and reptiles on the IUCN Red List—6% of all these highly threatened species—likely have benefitted from invasive mammal eradications on islands. Because monitoring of eradication outcomes is sporadic and limited, the impacts of global eradications are likely greater than we report here. Our results highlight the importance of invasive mammal eradication on islands for protecting the world's most imperiled fauna.This is the publisher’s final pdf. The published article is copyrighted by the National Academy of Sciences and can be found at: http://www.pnas.org/Keywords: island, restoration, invasive species, conservation, eradicationKeywords: island, restoration, invasive species, conservation, eradicatio