182 research outputs found

    Radiation zeros and scalar particles beyond the standard model

    Get PDF
    Standard radiation zeros arise from the factorization properties of tree-level amplitudes involving a massless photon and can occur when all charged particles in the initial and final state have the same sign. We investigate how several different processes involving new scalar particles beyond the standard model may exhibit radiation zeros and how this structure might be exploited to probe their electromagnetic structure. We focus on (i) unnoticed aspects of angular zeros in the process e- + e- --> Delta-- + gamma for doubly charged Higgs boson (or any bilepton) production and (ii) the process gamma + e- --> q + S/V for scalar (S) or vector (V) leptoquarks (LQs). We also discuss how factorized amplitudes and radiation zeros may appear in the gauge boson fusion production of non-conjugate leptoquark pairs via gamma + W --> S_i + S_j* in high energy ee reactions and how the zeros affect the production cross-sections for various types of scalar leptoquarks.Comment: 18 pages (LaTeX) plus 5 postscript figure

    Social Simulations: Improving Interdisciplinary Understanding of Scientific Positioning and Validity

    Get PDF
    Because of features that appear to be inherent in many social systems, modellers face complicated and subjective choices in positioning the scientific contribution of their research. This leads to a diversity of approaches and terminology, making interdisciplinary assessment of models highly problematic. Such modellers ideally need some kind of accessible, interdisciplinary framework to better understand and assess these choices. Existing texts tend either to take a specialised metaphysical approach, or focus on more pragmatic aspects such as the simulation process or descriptive protocols for how to present such research. Without a sufficiently neutral treatment of why a particular set of methods and style of model might be chosen, these choices can become entwined with the ideological and terminological baggage of a particular discipline. This paper attempts to provide such a framework. We begin with an epistemological model, which gives a standardised view on the types of validation available to the modeller, and their impact on scientific value. This is followed by a methodological framework, presented as a taxonomy of the key dimensions over which approaches are ultimately divided. Rather than working top-down from philosophical principles, we characterise the issues as a practitioner would see them. We believe that such a characterisation can be done 'well enough', where 'well enough' represents a common frame of reference for all modellers, which nevertheless respects the essence of the debate's subtleties and can be accepted as such by a majority of 'methodologists'. We conclude by discussing the limitations of such an approach, and potential further work for such a framework to be absorbed into existing, descriptive protocols and general social simulation texts.Social Simulation, Methodology, Epistemology, Ideology, Validation

    Third-generation leptoquark decays and collider searches

    Get PDF
    Collider searches for first-, second-, and third-generation scalar (S) or vector (V) leptoquarks (LQs) focus on the quark-lepton decay modes S,V -> q l. For SU(2)-doublet and -triplet leptoquarks with a sufficiently large splitting between the components, decays involving real W-boson emission (such as S_2^{(+5/3)} -> S_2^{(+2/3)} W^{+} and others) become possible and can change the patterns of leptoquark decays. For third-generation leptoquarks, where these mass splittings might be large, such modes could dominate certain leptoquark decays as they are (if kinematically allowed) guaranteed to be of order g^2 where g is the electroweak coupling. We calculate the decay rates for all such processes involving SU(2)-doublet and triplet, scalar and vector leptoquarks. Standard limits on mass splittings from precision electroweak measurements imply that only such decays involving SU(2)-doublet scalar LQs are likely kinematically possible.Comment: 13 pages, LaTeX, 2 separate postscript figure

    Electrical interconnectors : market opportunities, regulatory issues, technology considerations and implications for the GB energy sector

    Get PDF
    The linking of different jurisdictions or markets via electrical interconnection is a long established means of offering enhanced security of supply to the wider electrical system. In recent years, new incentives around exploiting market price differentials and facilitating the growth of renewable energy have represented the primary motivation for new interconnector projects. This paper provides a comprehensive overview of the technical options for delivering interconnectors, examines historical trends and discusses the ownership models, regulatory frameworks and market structures within which the investment case for new interconnectors must be made. Drawing on both technical and market considerations, the paper sets out the potential impact that interconnectors can have on the energy market and interested actors within connected markets before discussing in more detail the policy implications of the proposed roll out of new interconnector projects to the GB energy sector and suggests a number of factors beyond the current focus on consumer welfare could be given more prominence in the policy making around interconnector investment. The ways in which the UK's withdrawal from the European Union might impact on future and existing interconnectors in Britain is also discussed

    Effects of pitch size and skill level on tactical behaviours of Association Football players during small-sided and conditioned games

    Get PDF
    In Association Football, the study of variability in players' movement trajectories during performance can provide insights on tactical behaviours. This study aimed to analyse the movement variability present in: i) the players' actions zones and ii), distances travelled over time, considered as a player's positional spatial reference. Additionally, we investigated whether the movement variability characteristics of players from different skill levels varied. Two groups of U-17 yrs players of different performance levels (national and regional) performed in three small-sided games with varying pitch dimensions (small, intermediate and large). Linear and non-linear analyses were used to capture the magnitude and structure of their movement variability. Results showed that increases in pitch size resulted in more restricted action zones and higher distance values from personal spatial positional references for both groups. National-level players were more sensitive to pitch modifications and displayed more variability than regional-level players in the small and intermediate pitches. These findings advance understanding about individual tactical behaviours in Association Football and have implications for training design, using pitch size manipulation

    Topological R4R^4 Inflation

    Get PDF
    We consider the possibility that higher-curvature corrections could drive inflation after the compactification to four dimensions. Assuming that the low-energy limit of the fundamental theory is eleven-dimensional supergravity to the lowest order, including curvature corrections and taking the descent from eleven dimensions to four via an intermediate five-dimensional theory, as favored by recent considerations of unification at some scale around ∌1016\sim 10^{16} GeV, we may obtain a simple model of inflation in four dimensions. The effective degrees of freedom are two scalar fields and the metric. The scalars arise as the large five-dimensional modulus and the self-interacting conformal mode of the metric. The effective potential has a local maximum in addition to the more usual minimum. However, the potential is quite flat at the top, and admits topological inflation. We show that the model can resolve cosmological problems and provide a mechanism for structure formation with very little fine tuning.Comment: 25 pages, latex, 2 eps figures, minor changes, accepted for publication in Phys. Rev.

    Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state

    Get PDF
    MeCP2 is a nuclear protein with an affinity for methylated DNA that can recruit histone deacetylases. Deficiency or excess of MeCP2 causes severe neurological problems, suggesting that the number of molecules per cell must be precisely regulated. We quantified MeCP2 in neuronal nuclei and found that it is nearly as abundant as the histone octamer. Despite this high abundance, MeCP2 associates preferentially with methylated regions and high-throughput sequencing showed that its genome-wide binding tracks methyl-CpG density. MeCP2 deficiency results in global changes in neuronal chromatin structure, including elevated histone acetylation and a doubling of histone H1. Neither change is detectable in glia, where MeCP2 occurs at lower levels. The mutant brain also shows elevated transcription of repetitive elements. Our data argue that MeCP2 may not act as a gene-specific transcriptional repressor in neurons, but might instead dampen transcriptional noise genome-wide in a DNA methylation-dependent manner

    Updated Nucleosynthesis Constraints on Unstable Relic Particles

    Get PDF
    We revisit the upper limits on the abundance of unstable massive relic particles provided by the success of Big-Bang Nucleosynthesis calculations. We use the cosmic microwave background data to constrain the baryon-to-photon ratio, and incorporate an extensively updated compilation of cross sections into a new calculation of the network of reactions induced by electromagnetic showers that create and destroy the light elements deuterium, he3, he4, li6 and li7. We derive analytic approximations that complement and check the full numerical calculations. Considerations of the abundances of he4 and li6 exclude exceptional regions of parameter space that would otherwise have been permitted by deuterium alone. We illustrate our results by applying them to massive gravitinos. If they weigh ~100 GeV, their primordial abundance should have been below about 10^{-13} of the total entropy. This would imply an upper limit on the reheating temperature of a few times 10^7 GeV, which could be a potential difficulty for some models of inflation. We discuss possible ways of evading this problem.Comment: 40 pages LaTeX, 18 eps figure

    Space Telescope and Optical Reverberation Mapping Project. VII. Understanding the Ultraviolet Anomaly in NGC 5548 with X-Ray Spectroscopy

    Get PDF
    During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide the Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. This model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly
    • 

    corecore