25 research outputs found
The origin and tectonic history of the Southwest Philippine Sea
Submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy
at the
Massachusetts Institute of Technology
and the
Woods Hole Oceanographic Institution
September 1976This thesis is a collection and analysis of seafloor
magnetic anomalies, bathymetry, and the paleomagnetism
of DSDP sediments and basalt in the West Philippine Basin,
in an attempt to resolve questions about its origin as a
marginal basin. Our results suggest that this basin was
formed in an Eocene pulse of rapid spreading (v1/2 = 41-44 mm/yr)
in a direction (N 21°E) significantly different from later
pulses which opened the more eastern basins of the Philippine
Sea. The Central Basin Fault appears to be intimately
associated with this spreading by nature of its structure
and trend, and it may be a remanent of a former ridge system.
Our preliminary calculation of paleopole positions also
suggests that there was a large amount (60°) of clockwise rotation between this basin and the magnetic pole. This is
consistent with rotations of the Pacific plate with respect
to the magnetic pole and current directions of Philippine-
Pacific'relative rotations. Basement depths of 6 km in the
West philippine Basin imply that its crustal and/or lithospheric
structure is different from Pacific structure of the
same age
Iceland, the Farallon slab, and dynamic topography of the North Atlantic
ABSTRACT Upwelling or downwelling flow in Earth's mantle is thought to elevate or depress Earth's surface on a continental scale. Direct observation of this ''dynamic topography'' on the seafloor, however, has remained elusive because it is obscured by isostatically supported topography caused by near-surface density variations. We calculate the nonisostatic topography of the North Atlantic by correcting seafloor depths for lithospheric cooling and sediment loading, and find that seafloor west of the Mid-Atlantic Ridge is an average of 0.5 km deeper than it is to the east. We are able to reproduce this basic observation in a model of mantle flow driven by tomographically inferred mantle densities. This model shows that the Farallon slab, currently in the lower mantle beneath the east coast of North America, induces downwelling flow that deepens the western North Atlantic relative to the east. Our model also predicts dynamic support of observed topographic highs near Iceland and the Azores, but suggests that the Icelandic high is due to local upper-mantle upwelling, while the Azores high is part of a plate-scale lower-mantle upwelling to the south. An anomalously deep area off the coast of Nova Scotia may be associated with the downwelling component of edge-driven convection at the continental boundary. Thus, several of the seafloor's topographic features can only be understood in terms of dynamic support from flow in Earth's mantle
Correction to “Evidence for asymmetric nonvolcanic rifting and slow incipient oceanic accretion from seismic reflection data on the Newfoundland margin”
Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 111 (2006): B12403, doi:10.1029/2006JB004769
Crustal structure across the Grand Banks–Newfoundland Basin Continental Margin – II. Results from a seismic reflection profile
Author Posting. © Blackwell, 2006. This is the author's version of the work. It is posted here by permission of Blackwell for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 167 (2006): 157-170, doi:10.1111/j.1365-246X.2006.02989.x.New multi-channel seismic (MCS) reflection data were collected over a 565km
transect covering the non-volcanic rifted margin of the central eastern Grand Banks and the Newfoundland Basin in the northwestern Atlantic. Three major crustal zones are interpreted from west to east over the seaward 350-km of the profile: (1) continental crust; (2) transitional basement; (3) oceanic crust. Continental crust thins over a wide zone (~160 km) by forming a large rift basin (Carson Basin) and seaward fault block, together with a series of smaller fault blocks eastward beneath the Salar and Newfoundland basins. Analysis of selected previous reflection profiles (Lithoprobe 85-4, 85-2 and Conrad NB-1) indicates that prominent landward-dipping reflections observed under the continental slope are a regional phenomenon. They define the landward edge of a deep serpentinized mantle layer, which underlies both extended continental crust and transitional basement. The 80-km-wide transitional basement is defined landward by a basement high that may consist of serpentinized peridotite and seaward by a pair of basement highs of unknown crustal origin.
Flat and unreflective transitional basement most likely is exhumed, serpentinized mantle,
although our results do not exclude the possibility of anomalously thinned oceanic crust. A Moho reflection below interpreted oceanic crust is first observed landward of magnetic
anomaly M4, 230 km from the shelf break. Extrapolation of ages from chron M0 to the edge of interpreted oceanic crust suggests that the onset of seafloor spreading was ~138Ma (Valanginian) in the south (southern Newfoundland Basin) to ~125Ma (Barremian-Aptian boundary) in the north (Flemish Cap), comparable to those proposed for the conjugate margins.This work was funded by NSF grants OCE-9819053 and OCE-0326714 to
Woods Hole Oceanographic Institution, NSERC (Canada) and the Danish Research Council.
B. Tucholke also acknowledges support from the Henry Bryant Bigelow Chair in
Oceanography at Woods Hole Oceanographic Institution
A deep seismic investigation of the Flemish Cap margin: implications for the origin of deep reflectivity and evidence for asymmetric break-up between Newfoundland and Iberia
Author Posting. © Blacwell, 2006. This article is posted here by permission of Blackwell for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 164 (2006): 501–515, doi:10.1111/j.1365-246X.2006.02800.x.Seismic reflection and refraction data were acquired along the southeast margin of Flemish Cap at a position conjugate to drilling and geophysical surveys across the Galicia Bank margin. The data document first-order asymmetry during final break-up between Newfoundland and Iberia. An abrupt necking profile of continental crust observed off Flemish Cap contrasts strongly with gradual tapering on the conjugate margin. There is no evidence beneath Flemish Cap for a final phase of continental extension that resulted in thin continental crust underlain by a strong 'S'-like reflection, which indicates that this mode of extension occurred only on the Galicia Bank margin. Compelling evidence for a broad zone of exhumed mantle or for peridotite ridges is also lacking along the Flemish Cap margin. Instead, anomalously thin, 3–4-km-thick oceanic crust is observed. This crust is highly tectonized and broken up by high-angle normal faulting. The thin crust and rift structures that resemble the abandoned spreading centre in the Labrador sea suggest that initial seafloor spreading was affected by processes observed in present-day ultra-slow spreading environments. Landwards, Flemish Cap is underlain by a highly reflective lower crust. The reflectivity most likely originates from older Palaeozoic orogenic structures that are unrelated to extension and break-up tectonics.This work was supported by the Danish National Research Foundation, U.S. National Science Foundation grants OCE-9819053 and OCE-0326714, and the Natural Science and Engineering Research Council of Canada. Additional support for Hopper was provided by the German Research Foundation grant MO-961/4-1. Tucholke also acknowledges support from Henry Bryant Bigelow Chair in Oceanography at Woods Hole Oceanographic Institution
Crustal structure across the Grand Banks–Newfoundland Basin Continental Margin – I. Results from a seismic refraction profile
Author Posting. © Blackwell, 2006. This is the author's version of the work. It is posted here by permission of Blackwell for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 167 (2006): 127-156, doi:10.1111/j.1365-246X.2006.02988.x.A P-wave velocity model along a 565-km-long profile across the Grand
Banks/Newfoundland basin rifted margin is presented. Continental crust ~36-kmthick
beneath the Grand Banks is divided into upper (5.8-6.25 km/s), middle (6.3-
6.53 km/s) and lower crust (6.77-6.9 km/s), consistent with velocity structure of
Avalon zone Appalachian crust. Syn-rift sediment sequences 6-7-km thick occur in
two primary layers within the Jeanne d’Arc and the Carson basins (~3 km/s in upper
layer; ~5 km/s in lower layer). Abrupt crustal thinning (Moho dip ~ 35º) beneath the
Carson basin and more gradual thinning seaward forms a 170-km-wide zone of rifted
continental crust. Within this zone, lower and middle continental crust thin
preferentially seaward until they are completely removed, while very thin (<3 km)
upper crust continues ~60 km farther seaward. Adjacent to the continental crust, high
velocity gradients (0.5-1.5 s-1) define an 80-km-wide zone of transitional basement
that can be interpreted as exhumed, serpentinized mantle or anomalously thin
oceanic crust, based on its velocity model alone. We prefer the exhumed-mantle
interpretation after considering the non-reflective character of the basement and the
low amplitude of associated magnetic anomalies, which are atypical of oceanic crust.
Beneath both the transitional basement and thin (<6 km) continental crust, a 200-kmwide
zone with reduced mantle velocities (7.6-7.9 km/s) is observed, which is
interpreted as partially (<10%) serpentinized mantle. Seaward of the transitional
basement, 2- to 6-km-thick crust with layer 2 (4.5-6.3 km/s) and layer 3 (6.3-7.2
km/s) velocities is interpreted as oceanic crust. Comparison of our crustal model
with profile IAM-9 across the Iberia Abyssal Plain on the conjugate Iberia margin
suggests asymmetrical continental breakup in which a wider zone of extended
continental crust has been left on the Newfoundland side.This research was supported by National Science Foundation (NSF)
grants OCE-9819053 and OCE-0326714, by the National Sciences and Engineering
Research Council of Canada (NSERC), and by the Danish National Research
Foundation. B. Tucholke also acknowledges support from the Henry Bryant Bigelow
Chair in Oceanography from Woods Hole Oceanographic Institution
The Thermal Structure of the Central Nova Scotia Slope (Eastern Canada): Seafloor Heat Flow and Thermal Maturation Model
The thermal history and maturation potential of the central Scotian Slope is constrained using a combination of 47 recently acquired seafloor heat flow measurements, two-dimensional (2D) seismic reflection data, available well data, simple lithospheric rift models, and thermal and petroleum systems modelling. Consistent heat flow values of 41–46 mW·m−2 were measured seaward of the salt diapiric province and across the slope away from the influence of salt structures. Significant but highly variable increases in heat flow were measured for stations overlying salt diapiric structures, reaching values upwards of 72 mW·m−2. Simple models of conductive heat transfer with static salt geometries constrained from reflection profiles indicate that two of the four models fit the data, whereas two indicate much higher values suggestive of additional, convective effects. Dynamic 2D thermal models were developed to incorporate the effects of lithospheric rifting, crustal stretching, and radiogenic heat production in the sediment and basement. These models help constrain the hydrocarbon maturation potential of the central Scotian Slope, where deep borehole data are lacking. Our results suggest that a potential Late Jurassic source rock interval rests primarily within the late oil window and that salt structures act primarily to reduce maturation in the adjacent deep sediment layers.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
The oceanic crustal structure at the extinct, slow to ultraslow Labrador Sea spreading center
Two seismic refraction lines were acquired along and across the extinct Labrador Sea spreading center during the Seismic Investigations off Greenland, Newfoundland and Labrador 2009 cruise. We derived two P?wave velocity models using both forward modeling (RAYINVR) and traveltime tomography inversion (Tomo2D) with good ray coverage down to the mantle. Slow-spreading Paleocene oceanic crust has a thickness of 5?km, while the Eocene crust created by ultraslow spreading is as thin as 3.5?km. The upper crustal velocity is affected by fracturation due to a dominant tectonic extension during the waning stage of spreading, with a velocity drop of 0.5 to 1?km/s when compared to Paleocene upper crustal velocities (5.2–6.0?km/s). The overall crustal structure is similar to active ultraslow-spreading centers like the Mohns Ridge or the South West Indian Ridge with lower crustal velocities of 6.0–7.0?km/s. An oceanic core complex is imaged on a 50?km long segment of the ridge perpendicular line with serpentinized peridotites (7.3–7.9?km/s) found 1.5?km below the basement. The second, ridge-parallel line also shows extremely thin crust in the extinct axial valley, where 8?km/s mantle velocity is imaged just 1.5?km below the basement. This thin crust is interpreted as crust formed by ultraslow spreading, which was thinned by tectonic extension
Heat flow ratios of stations from the Iberian abyssal plain (Table 1)
New heat flow observations have been made in the Iberia abyssal plain off the Galicia margin along the transeat of Ocean Drilling Program Leg 149 drill sites. in order to investigate the nature of this unusually wide and deep continet-ocean transition region. Our results indicate the presence of three separate zones. Average values of 47.5 +/- 3 mW/m in the westernmost zone III agree with predictions of standard oceanic lithospheric models for its estimated age of 126 Ma. In contrast, the heat flow within zone II is 5-15 mW/m higher than predicted. assuming that the mantle heat flow remains constant across the basin. This region of high values is coincident with the location of a major intra-crustal “S”-type reflector east of ODP Site 900. and the anomaly is consistent with the presence of 2-3 km of primarily upper continental crust above the reflector, with concentrations of radiogenic components similar to those from granodiorite samplles dredged off Galicia Bank. It is not, however, consistent with the low values of heat production measured on gabbroic sanhples from its western end at ODP Site 900. In zone I, detailed measurements across the tilted fault block south of ODP Site 901 show consistent variations which closely match predictions due to the effects of basement structure and sediment deposition. There is no evidence for variations due to vertical convective transport along the dipping basement fault block. Once corrected for these variations. measurements in zone I yield average values that agree quite well with previous measurements across Calicia Bank. indicating no systematic landward increase in heat flow with decreasing amounts of continental, extension