3,081 research outputs found

    An investigation of the interaction of N2O with the Si(111)-7 × 7 surface using AES and optical reflectometry; A comparison with O2

    Get PDF
    At 300 K, N2O decomposes into N2, leaving behind atomic oxygen at the Si(111)Âż7 × 7 surface. Decomposition at two different sites is proposed, having the overall initial reaction probability: s(0) = (6.7 ± 0.7) × 106. SiOx(x not, vert, similar 1) bonds are predominantly formed, saturation occurring at monolayer coverage. This oxygen monolayer appears to completely prevent further oxygen uptake by additional N2O or O2 exposures, in contrast with the adsorption behaviour of O2 on Si(111)-7 × 7, which exhibits slow sorption beyond one monolayer

    VisDB: Database Exploration

    Get PDF

    Using Visualization to Support Data Mining of Large Existing Databases

    Get PDF
    In this paper. we present ideas how visualization technology can be used to improve the difficult process of querying very large databases. With our VisDB system, we try to provide visual support not only for the query specification process. but also for evaluating query results and. thereafter, refining the query accordingly. The main idea of our system is to represent as many data items as possible by the pixels of the display device. By arranging and coloring the pixels according to the relevance for the query, the user gets a visual impression of the resulting data set and of its relevance for the query. Using an interactive query interface, the user may change the query dynamically and receives immediate feedback by the visual representation of the resulting data set. By using multiple windows for different parts of the query, the user gets visual feedback for each part of the query and, therefore, may easier understand the overall result. To support complex queries, we introduce the notion of approximate joins which allow the user to find data items that only approximately fulfill join conditions. We also present ideas how our technique may be extended to support the interoperation of heterogeneous databases. Finally, we discuss the performance problems that are caused by interfacing to existing database systems and present ideas to solve these problems by using data structures supporting a multidimensional search of the database

    Adsorption of atomic oxygen (N2O) on a clean Si(100) surface and its influence on the surface state density; A comparison with O2

    Get PDF
    This paper describes a study concerning the interaction of molecular oxygen (O2) and nitrous oxide (N2O) with the clean Si(100) 2 × 1 surface in ultrahigh vacuum at 300 K. Differential reflectometry (DR) in the photon energy range of 1.5¿4.5 eV, Auger electron spectroscopy (AES) and low energy electron diffraction (LEED) have been used to monitor these solid-gas reactions. With this combination of techniques it is possible to make an analysis of the (geometric and electronic) structure and chemical composition of the surface layer. The aim of the present study was to give a description of the geometric nature of the oxygen covered Si(100) surface. For that purpose we have used both molecular (O2) and atomic oxygen (as released by decomposition of N2O) to oxidize the clean Si(100)2 × 1 surface

    Supporting Data mining of large databases by visual feedback queries

    Get PDF
    In this paper, we describe a query system that provides visual relevance feedback in querying large databases. Our goal is to support the process of data mining by representing as many data items as possible on the display. By arranging and coloring the data items as pixels according to their relevance for the query, the user gets a visual impression of the resulting data set. Using an interactive query interface, the user may change the query dynamically and receives immediate feedback by the visual representation of the resulting data set. Furthermore, by using multiple windows for different parts of a complex query, the user gets visual feedback for each part of the query and, therefore, may easier understand the overall result. Our system allows to represent the largest amount of data that can be visualized on current display technology, provides valuable feedback in querying the database, and allows the user to find results which, otherwise, would remain hidden in the database

    Object-oriented querying of existing relational databases

    Get PDF
    In this paper, we present algorithms which allow an object-oriented querying of existing relational databases. Our goal is to provide an improved query interface for relational systems with better query facilities than SQL. This seems to be very important since, in real world applications, relational systems are most commonly used and their dominance will remain in the near future. To overcome the drawbacks of relational systems, especially the poor query facilities of SQL, we propose a schema transformation and a query translation algorithm. The schema transformation algorithm uses additional semantic information to enhance the relational schema and transform it into a corresponding object-oriented schema. If the additional semantic information can be deducted from an underlying entity-relationship design schema, the schema transformation may be done fully automatically. To query the created object-oriented schema, we use the Structured Object Query Language (SOQL) which provides declarative query facilities on objects. SOQL queries using the created object-oriented schema are much shorter, easier to write and understand and more intuitive than corresponding S Q L queries leading to an enhanced usability and an improved querying of the database. The query translation algorithm automatically translates SOQL queries into equivalent SQL queries for the original relational schema
    • 

    corecore