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Abstract

In this paper we describe the VisDB system, which allows an explo-
ration of large databases using visualization techniques. The goal of
the system is to support the query specification process by using each
pixel of the display to represent one data item of the database. By
arranging and coloring the pixels according to the relevance of the
data items with respect to the query, the user gets a visual impression
of the resulting data set. Using sliders for each condition of the query,
the user may change the query dynamically and receives immediate
feedback from the visual representation of the resulting data set. Dif-
ferent visualization techniques are available for different stages of
exploration. The first technique uses multiple windows for the differ-
ent query parts, providing visual feedback for each part of the query
and helping the user to understand the overall result. The second
technique is an extension of the first one, providing additional infor-
mation by assigning two dimensions to the axes. The third technique
uses a grouping of dimensions and is designed to support a focused
search on smaller data sets.

Keywords: Visualizing Large Data Sets, Visualizing Multidimen-
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1 Introduction

In very large databases with tens of thousands or even millions of

data items, it is often a problem to find the data in which a person is inter-

ested. Scientific, engineering, and environmental databases, for exam-

ple, contain large amounts of data that in many cases are collected auto-

matically via sensors and (satellite) monitoring systems. In querying

such systems, even users who are experienced in using a database and

query system may have difficulties finding the interesting data spots. If

the user does not know the data and its distribution exactly, many queries

may be needed to find the interesting data sets. The core of the problem

in searching huge amounts of data is the process of query specification.

With today’s database systems and their query interfaces, a person has to

issue queries in a one-by-one fashion. Generally, there are no possibili-

ties to slightly change a query or to express vague queries. Most impor-

tantly, the user gets no feedback on his query, except the resulting data

set containing either no data items and thus no hint for continuing the

search, or too many data items and thus too many to look at.

Many approaches have been made to improve the database query in-
terface by providing better feedback in cases of unexpected results. One
approach consists of graphical database interfaces that allow the user to
browse the data (e.g. FLEX [Mot 90] or GRADI [KL 92]). Another ap-
proach uses cooperative database interfaces [Kap 82] that try to give
‘approximate answers’ in cases where the queries do not provide a sat-
isfactory answer. Such systems use techniques like query generalization
that is dropping or relaxing a selection predicate in cases where the
original queries fail, and statistical approximations or intensional re-
sponses instead of full enumeration in the case of large results (key
ideas were presented for the first time in [JKL 77]). Cooperative sys-
tems mainly help the user to understand the results and to refine errone-
ous queries, but do not help to find interesting properties of the data
such as functional dependencies, local correlations, or exceptional data
items. Another area that relates to our work is the area of information
retrieval. In information retrieval, a lot of research has been done to im-
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prove recall and precision in querying databases of unstructured data
such as (full) text. User-provided relevance assessments of results are
e.g. used to re-rank the results or to re-run adapted queries [SM 83].

In the VisDB system, the main idea is to support the query specifica-
tion process by visually representing the result. The tables of (relation-
al) databases may also be seen as sets of multidimensional data with the
number of attributes corresponding to the number of dimensions. Often
it is not clear which dimensions are independent and which are depen-
dent. In most cases, only a limited number of the dimensions are of in-
terest in a certain context. In the VisDB system, we therefore restrict the
number of visualized dimensions to those that are part of the query, i.e.
the dimensionality of our visualizations corresponds to the number of
selection predicates. The visualization techniques employed in the
VisDB system are not only useful for supporting simple one table que-
ries (c.f. sections 3-5) but also for supporting complex queries involv-
ing nested Boolean expressions and complex join conditions (c.f.
section 6).

Many approaches to visualize arbitrary multivariate, multidimension-
al data have been proposed for various purposes in different application
contexts. Many examples can be found in the well-known books of Ber-
tin [Ber 81] and Tufte [Tuf 83]. More recent techniques include shape
coding [Bed 90], worlds within worlds [FB 90], parallel coordinates
[ID 90], iconic displays [PG 88, BMS 92], dimensional stacking
[LWW 90], hierarchical plotting [MGTS 90], and dynamic methods as
presented in [MZ 92]. In dealing with databases consisting of tens of
thousands to millions of data items, our goal is to visualize as many
data items as possible at the same time to give the user some kind of
feedback on the query. The obvious limit for any kind of visualization
is the resolution of current displays which is in the order of one to three
million pixels, e.g. in the case of our 19 inch displays with a resolution
of 1024 x 1280 pixels about 1.3 million pixels. Important is the interac-
tiveness of such a system. Empirical studies show that interactive, slid-
er-based interfaces improve efficiency and accuracy in accessing data-
bases considerably [Shn 94]. Equally important is the possibility of
getting immediate feedback on the modified query. By playing with
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such a system, the user may learn more about the data than by issuing
hundreds of queries.

2 A New Query Paradigm

In today’s database systems, queries are specified in a one-by-one
fashion. This is adequate if the user of the database exactly specifies the
desired data and accesses a clearly separated data set. For many appli-
cation areas where databases are used on a regular basis, e.g. account-
ing, reservation systems, and so on, queries are often based on keys, ac-
cessing exactly the desired data. For example, if a person deposits
money in a specific account or if all transactions for a specific account
are searched for, the resulting data set is clearly separated, and therefore
one query is in general sufficient to get the desired data. In other appli-
cation areas, however, especially those with very large data volumes
such as scientific, engineering and environmental databases, it is often
difficult to find the desired data. Problems occur if the database contains
data different from what the user expects or if the user does not know
exactly what to look for. In the latter case, querying the database is like
an inexact search. If a query does not provide the desired result, usually
the database is queried by another similar query, differing in just one
detail. While searching for the desired data, many similar queries are
often issued before the user is able to find the desired result.

Many problems in querying a database arise if the user does not know
the database system, the data model and query language, or the schema
of the database. But even if the user has perfect knowledge in all these
domains, i.e. all queries are completely correct (syntactically as well as
semantically), queries may have results which do not correspond to the
user’s intentions. The reason is that the user does not know the specific
data in the database. In this case, it is very difficult for the user to esti-
mate the amount of data that will be retrieved, especially for range que-
ries and complex queries with many selection predicates. With our que-
ry interface, we use visualization techniques to give the users more
feedback on the results of their queries. If for example researchers in
environmental science are searching a huge database of test series for
significant values, they might be looking for some correlation between
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multiple dimensions for some specific period of time and some geo-
graphic region. Since none of the parameters for the query is fixed, it is
in general very difficult to find the desired information. The researchers
would probably start to specify one query that corresponds to some as-
sumption and after issuing many refined queries and applying statistical
methods to the results, they might find some interesting correlation.

With the VisDB system, the query specification process would be
much easier. In the beginning, the users would still have to specify one
query. Then, guided by the visual feedback, they may interactively
change the query according to the impression from the visualized re-
sults. In exploring very large databases, the visualization of results cou-
pled with the possibility to incrementally refine the query are an effec-
tive way to find the interesting properties of the data. The key idea of
the VisDB system is to use the phenomenal abilities of the human vision
system, which is able to analyze small to midsize amounts of data very
efficiently and recognizes immediately patterns in images which would
be very difficult (in some cases even impossible) if done by the comput-
er. One major research challenge is to find adequate ways of visually
presenting multidimensional data to support the user in analyzing and
interpreting the data.

3 Visualizing Large Data Sets of Multidimensional Data

The basic idea of our visualization techniques is to use each pixel of
the screen to visualize the data items resulting from a query. As the re-
sult of a query, the user does not only get the data items fulfilling the
query, but also a number of data items that are approximately fulfilling
the query. The approximate results are determined by using distance
functions for each of the selection predicates which are combined into
the relevance factor. The distance functions are datatype and applica-
tion dependent and must be provided by the application. Examples for
distance functions are the numerical difference (for metric types), dis-
tance matrices (for ordinal and nominal types), lexicographical, charac-
ter-wise, substring or phonetic difference (for strings), and so on. Hav-
ing calculated the distances for each of the selection predicates, the
distances are combined into the relevance factor. For important aspects
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such as normalizing and weighting the different selection predicates,
the formulas we use to calculate the relevance factors, and the heuristics
used to reduce the number of displayed data items, the reader is referred
to “Appendix: Calculating the Relevance Factors”.

3.1 Basic Visualization Technique
The basic idea for visually displaying the data on the screen is to sort

them according to their relevance with respect to the query and to map
the relevance factors to colors. The sorting is necessary to avoid com-
pletely sprinkled images that would not help the user in understanding
the data. One question in designing the system was how to arrange the
relevance factors on the screen. We tried several arrangements such as
top-down, left-to-right, centered, etc. and found that arrangements with
the highest relevance factors centered in the middle of the window
seemed to be the most natural ones. The one hundred percent correct
answers are colored yellow in the middle and the approximate answers
create a rectangular spiral around this region (c.f. figure 1). The colors
range from yellow to green, blue and red to almost black and denote the
distance from the correct answers. The colorscale used has been deter-
mined empirically (see “Appendix: Coloration of the Relevance Fac-
tors”). To relate the visualization of the overall result to visualizations
of the different selection predicates (dimensions), we generate a sepa-
rate window for each selection predicate of the query and arrange them
next to each other (c.f. figure 2). In the separate windows we place the
pixels for each data item at the same relative position as the overall re-
sult for the data item in the overall result window. All the windows to-
gether make up the multidimensional visualization. By relating corre-
sponding regions in the different windows, the user is able to perceive
data characteristics such as multidimensional clusters or correlations.
Additionally, the separate windows for each of the selection predicates
provide important feedback to the user, e.g. on the restrictiveness of
each of the selection predicates and on single exceptional data items.

3.2 Mapping two Dimensions to the Axes
We also experimented with other arrangements of the data items on

the screen. One straightforward idea was to display the data in 2D or 3D
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with selected dimensions assigned to the axes. With such arrangements,
however, one has the problem that on the one hand many data items
may be concentrated in some area of the screen while other areas are
virtually empty, and on the other hand many data items are superim-
posed and therefore not visible. Although 2D- or 3D-visualizations may
be very helpful, e.g. in all cases where data have some inherent two- or
three-dimensional semantics, we did not pursue this idea for several
reasons. One reason was that in most cases the number of data items
that can be represented on the screen at the same time is quite limited.
This was in contrast to one of our goals, namely to present as many data
items as possible on the screen. A second reason was that in most cases
where a 2D- or 3D-arrangement of the data really makes sense, systems
using such arrangements have already been built. For spatial queries on
two-dimensional data, for example, a 2D-visualization is obviously the
best support for querying the database and basically all Geographical
Information Systems provide such visual representations of the data.
For all cases, however, where no inherent two- or three-dimensional se-
mantics of the data exists, our representation can be of great value in
providing visual feedback when querying the database. Stimulated by
real 2D- or 3D- representations of the data, we decided to improve our
interface by including some feedback on the direction of the distance
into the visualization. The basic idea is to assign two dimensions to the
axes and to arrange the relevance factors according to the direction of
the distance; for one dimension negative distances are arranged to the
left, positive ones to the right and for the other dimension negative dis-
tances are arranged to the bottom, positive ones to the top (c.f. figure 3).

With this kind of representation, we do not represent the distance of
data items directly by their location, but we denote the absolute value of
the distance by their color and the direction by their location relative to
the correct answers (colored yellow). The advantage of this kind of rep-
resentation is that each data item may be assigned to one pixel and no
overlay of data items with the same distance does occur. A problem
may arise in some special cases if e.g. no data items exist that have a
negative distance for both dimensions but many data items that have a
negative distance for one of them and a positive one for the other one.
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In this case, the bottom left corner of the window would be completely
empty. In the worst case, two diagonally opposite corners of the win-
dow may be completely empty and, as a result, only half as many data
items as possible are presented to the user. Even in this case, the user
gets valuable information on how to change the query to get more or
less results. In summary, it may be stated that maximizing the number
of data items conflicts with arrangements that have multiple dimensions
assigned to the axes.

3.3 Grouping the Dimensions for each Data Item
In both the original arrangement and the 2D-arrangement, the pixels

corresponding to the different dimensions of one data item are distrib-
uted in different windows for each dimension. In contrast, in the group-
ing arrangement all dimensions for one data item are grouped together
in one area. Each area is arranged in the rectangular spiral-shape ac-
cording to the combined relevance factor of the considered data items
(c.f. figure 4). The coloring of the distances for the different dimensions
may be the same as in the original or the 2D-arrangement. The generat-
ed visualizations, however, are completely different from those of the
original and 2D-arrangements. The visualizations generated using the
grouping arrangement consist of only one window with many areas vi-
sualizing all dimensions of the considered data items instead of many
windows, each providing a visual representation of only one dimension
(c.f. figures 4 and 6c). At this point, it should be mentioned that the idea
of grouping the dimensions into one area is similar to the shape coding
approach described in [Bed 90]. In our approach, however, we do not
focus on shape to distinguish the data items, and the criterion and ar-
rangement of the data items is different.

Preliminary experiments show that for the grouping arrangement
more pixels per data value are needed. In the case of basic and the 2D-
arrangements, one pixel per dimension per data item is used. Empirical
tests show that in the case of the grouping arrangement, an area of at
least 2 x 2 (better: 3 x 3 or 4 x 4) pixels per dimension per data item is
needed for the visualization to provide useful results. This implies that
only one-fourth (or even one-ninth or one-sixteenth) of the data items
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can be displayed on the screen at one point of time, which means that
the grouping arrangement is only suitable for a focused search on
smaller data sets. Note that additional pixels are needed for the area sur-
rounding each data item. In contrast to the other arrangements, a border
is necessary since it would otherwise be impossible to know which pix-
els belong to which data item. In figures 6 and 7, we show two data sets
using all three visualization techniques. Figure 6 shows an eight-dimen-
sional data set with 1,000 data items and figure 7 shows one with 7,000
data items.

Despite the fact that fewer data items may be visualized, the grouping
arrangement provides more useful visualizations for data sets with larg-
er dimensionality. In the original and 2D-arrangements, the pixels for
each dimension of the data items are only related by their position. For
relatively small dimensionality (less than 8 dimensions), it seems to be
quite easy for humans to relate the different portions of the screen. The
larger the dimensionality becomes, the more difficult it gets to relate the
different portions of the visualization and to perceive correlations
among them. In the case of the grouping arrangement, it is not neces-
sary for the user to relate different portions of the screen, and it there-
fore seems to be advantageous for larger dimensionalities.

4 Interactive Data Exploration

In using our query and visualization system, the possibility to modify
queries dynamically is important. Since modifications have a direct im-
pact on the visualizations, the user will get immediate feedback on the
effects of the changes. The visualizations provide feedback on the
amount of data retrieved, on the restrictiveness of the conditions, on the
distribution of the distances for each condition and on special areas the
user might be interested in. For example, if the yellow region in the
middle of each window is getting larger (shrinking), more (less) data
items fulfill the condition; if a window is getting darker (brighter), the
corresponding selection predicate is getting more (less) restrictive; if
the overall structure of a window is changing, the distribution of dis-
tances for the corresponding selection predicate is changing, and so on.
These visual indicators are of valuable help in understanding the effects
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of query modifications quickly and learning more about the data in the
database, especially in the context of large databases with millions of
data items.

In querying a database using the VisDB system, the user initially spec-
ifies a query using graphical user interfaces such as GRADI [KL 92] or
traditional query languages such as SQL. As a result of the query, the
user gets the interactive query and visualization interface of the VisDB
system, which is divided into the ‘Visualization’ portion on the left and
the ‘Query Modification’ portion on the right (c.f. figure 5). In the ‘Vi-
sualization’ portion, the resulting data set including a certain percent-
age of approximate answers is displayed by using one of the visualiza-
tion methods described in section 3. In the ‘Query Modification’
portion, sliders for modifying the selection predicates and weighting
factors as well as some other options are provided. Different kinds of
sliders are available for different datatypes and different distance func-
tions. Sliders for numbers, for example, allow graphical manipulations
of the lower and upper limits, or of the medium value and some allowed
deviation. Sliders for discrete types reflect the discrete nature of the
data by allowing only discrete movements of the slider. Sliders for non-
metric types (ordinal and nominal datatypes) may be, for example, enu-
merations of the possible values with the possibility to select each of the
values. Special sliders may be designed for special datatypes and spe-
cial distance functions, e.g. for strings with different distance functions.

Below the sliders, several parameters are listed for each selection
predicate, namely the ‘number of results’, the ‘query range’ and
‘weighting factors’, the data values of a ‘selected tuple’, and the data
values corresponding to some ‘selected color range’. The possibility of
getting the values corresponding to some color or color range for each
selection predicate may help the user to understand and interpret the vi-
sualization and to modify the query accordingly. To focus on sets of
data items with a specific color, it is possible to select some color range
in one of the sliders to get only those data items in the corresponding
visualization window that have the selected color for the considered at-
tribute. In the other visualization windows, the same data items are dis-
played, allowing the user to easily compare the values of the other at-
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tributes of those data items. Also helpful for the user to understand the
visualization and to find interesting data spots is the possibility to select
a specific data item in one of the visualization windows, highlight it in
all visualization windows, and display the values for the attributes in
the ‘selected tuple’ field. The user may use this option to focus on ex-
ceptional data items or to get an example of a data item from an inter-
esting region in one of the windows. Below the color spectrum for the
overall result, there are fields for the number of data items in the data-
base, the number of data items being displayed in the visualization win-
dow (absolute value and percentage) and the number of resulting data
items presented to the user. Using a slider, the user may change the per-
centage of data being displayed or the allowed range, in which case the
percentage is determined using the heuristics described in “Appendix:
Calculating the Relevance Factors”. Changing the percentage of data
being displayed may completely change the visualization since the dis-
tance values are normalized according to the new range.

In the normal mode, the system recalculates the visualization after
each modification of the query. The user may also switch to an ‘auto re-
calculate off’ mode where queries are only recalculated on demand.
This option is useful for large databases with many data items or if
complex distance functions are used, because the re-calculation for
each modification may need a considerable amount of time. Other
menu options allow the user to choose different distance or combinator
functions, to select a different visualization technique or a different
slider type, to add or delete selection predicates, to extend the query, or
to issue a new query.

5 Examples

In figures 5 - 8, several visualizations of query results are displayed.
Figure 5 has been generated by using surface point data from a large
molecule complex (subtilisin carlsberg with eglin). In our molecular bi-
ology project, the VisDB system has been used to find possible docking
regions by identifying sets of surface points with distinct characteris-
tics. In evaluating our visualization techniques, we currently explore
other data sets including a large database of geographical data, a large
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environmental database, a NASA earth observation database, and arti-
ficially generated data sets. Artificial data sets are crucial for comparing
different visualization techniques to find their strengths and weaknesses
[BKP 94]. Being able to vary the number of data items, the number of
dimensions, and the properties of the data (e.g. distribution of each di-
mension and the number and size of clusters) is important for doing
controlled comparisons. The visualizations displayed in figures 6 - 8
use artificially generated data consisting of a uniformly distributed base
data set and multiple clusters. The data set used for figure 6 consists of
1,000 eight-dimensional data items with five clusters. The data set used
for figure 7 is similar except that it consists of 7,000 data items.
Figure 8 is generated from a database with 100,000 five-dimensional
data items containing five clusters. In the visualization, many regions of
different colors are clearly identifiable and denote clusters of data items
with a comparable distance. Interesting are the correlations between the
windows for the different selection predicates. Often regions that have
some specific color in the section for one selection predicate have some
different color in the section for another selection predicate. Sometimes
even an inverse correlation can be found, as in case of the green versus
red regions for selection predicates 2 and 3 in figure 8. Another interest-
ing observation in comparing the visualizations a and b in figures 7
and 8 is that colored regions of the basis visualization technique often
cluster in one quadrant of the 2D-arrangement (c.f. brown region for se-
lection predicate 8 in figure 7). This provides additional information on
the position of the cluster with respect to the two dimensions that have
been assigned to the axes and may help the user in modifying the query.
Also interesting, but not easily identifiable in the printed version of our
visualizations are hot spots, i.e. single exceptional data items in regions
which are otherwise homogeneous. Much of the information the user
may get out of the visualization is related to the semantics of the data.
Due to space limitations we do not elaborate on these aspects, since we
would have to introduce the schema and the instances of the databases
used; in the case of the artificial data sets, this would require at least a
specification of the base data set and all clusters.
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Our query and visualization system is not only useful for data mining
tasks such as finding correlations between different dimensions, finding
groups of similar data, and finding hot spots, but also for other tasks
such as similarity retrieval, finding adequate query parameters and
weighting factors, or finding correspondences in different databases.
Finding similar parts in a large CAD database is an example for the first
two of these tasks. In a CAD database of 3D-parts, it is not obvious how
similarity can be formally described. Usually, there are many parame-
ters (in a concrete application in mechanical engineering we had 27 pa-
rameters) describing the parts, and each of them might be important for
a part to be similar. In searching for similar parts in traditional CAD da-
tabases, a query is issued by using fixed allowances for some of the pa-
rameters. As a result of the query, the user only gets the information
concerning whether a data item fulfills all allowances or not. However,
the user might miss a part that exactly fits in all but one parameter and
just misses fulfilling the query due to that single parameter. Therefore,
in similarity retrieval, it seems to be important to provide approximate
responses and to allow the user to adjust the allowances and weighting
parameters. Our system provides features that exactly support these
tasks, making it a promising candidate to be used in similarity retrieval.
Another example of an interesting application of our system is in multi-
database systems where it is often a problem finding corresponding data
items in multiple independent databases. If a distance function for the
two attributes to be joined can be defined, our system may help the user
to identify closely related data items and to find adequate parameters
for approximately joining the databases.

6 Visualizing the Results of Complex Queries

In addition to simple one-table queries with all selection predicates
being connected by the same Boolean operator, our visualization tech-
niques have also been used to support complex queries i.e. queries with
the selection predicates being arbitrarily connected (nested ANDs and
ORs), multi- table queries, and some types of nested queries (for de-
tails see [KKS 94]). Complex queries are supported by using multiple
layers of windows for different parts of the query, giving the users vi-
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sual feedback for each part of the query and helping them to under-
stand the overall result. This is sufficient for queries with nested Bool-
ean operators, but in order to support multi-table and nested queries, a
mechanism for joining tables and dealing with the cross product is nec-
essary.

Our idea for supporting multi-table queries is to consider all data
items of the cross product that approximately fulfill the join condition.
As for all other selection predicates, the user obtains a separate win-
dow for the join condition with all data items of the cross product that
fulfill the join condition being yellow and the others being colored ac-
cording to their distance. In some cases, e.g. if the tables are connected
by foreign keys which are designed to connect related data items, this
may not be helpful because the distances on foreign keys may not have
any semantics. In such cases, only those data items that fulfill the join
condition are considered and no visualization for the join condition is
generated. In many other cases, however, it is helpful to consider data
items that approximately fulfill join conditions as well. For joins on nu-
merical attributes, for example, the numerical difference between the
considered data items from the two relations is used as an approxima-
tion of the join condition to be fulfilled. In a similar way, the distances
for non-equijoins (a1 < a2) or parametrized (non-equi)joins (a1 -
a2 < c) are determined.

In the case of nested queries, separate visualizations are provided for
each of the selection predicates including the subqueries involved. In
the visualization corresponding to the overall result of a subquery, the
user gets yellow in case the subquery condition is fulfilled and other-
wise the color corresponding to the distance of the data item most
closely fulfilling the subquery condition. The data item most closely
fulfilling the subquery condition can be determined by the minimum
distance in performing an approximate join of the inner and the outer
relation(s). Instead of displaying a single value for the whole subquery,
there might be an option to select a single data item and get the com-
plete subquery with all its selection predicates including the join of in-
ner and outer relation(s) presented in a separate window.
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7 Implementation

The visualizations presented in figures 5 - 8 are screen dumps from
working with the VisDB system. The VisDB system is implemented in
C++/MOTIF and runs under X-Windows on HP 7xx machines. The
current version is main memory based and allows an interactive data-
base exploration for databases containing up to 50,000 data items (on
HP 735 workstations). This is very encouraging since we have not yet
spent time optimizing our algorithms. When interfacing with current
commercial database systems, however, performance problems arise
since no access to partial results of a query is available, no support for
incrementally changing queries is provided, and no multidimensional
data structures are used for fast secondary storage access. We are cur-
rently working on improving the performance in directly interfacing
with the database system. In the future, we plan to implement the VisDB
system on a parallel machine that will be able to support interactive
query modifications even for mid-size to large amounts of data and
complex distance functions.

8 Future Extensions

Inspired by using our prototype, we already have several ideas to ex-
tend our system. One extension is the automatic generation of queries
that correspond to some specific region in one of the visualization win-
dows. The region may be graphically identified by the user. The system
should then try to find adequate selection predicates that provide the de-
sired data items as a result. Another idea is to generate time series of vi-
sualizations corresponding to queries that are changed incrementally.
By changing the query, different portions of multidimensional space
can be visualized, allowing even larger amounts of data to be displayed.
To further improve our system, we intend to apply it to many different
application domains, each having its own parameters, distance func-
tions, query requirements and so on. In addition to real world data, we
will also use artificially generated data sets which allow controlled
studies on the effectiveness of our visualization techniques.
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9 Conclusions

One of the big challenges that researchers in the visualization area are
currently facing is to develop visualization techniques that are adequate
to explore very large amounts of arbitrary multidimensional data. The
task is to efficiently retrieve interesting data sets, i.e. hot spots, clusters
of similar data, or correlations between different dimensions. Our ap-
proach to support these ‘data mining’ tasks combines traditional data-
base querying and information retrieval techniques with new tech-
niques of visualizing the data. Our VisDB system allows visualization
of the largest amount of data that can be displayed at one point of time
on current displays, providing valuable feedback in querying the data-
base and allowing the user to find results which would otherwise re-
main hidden in the database. The interactivity of the system allows fo-
cusing on interesting data, providing a promising way to explore
databases efficiently.

We believe that query and visualization systems like ours are of high
value for many applications. They may be the starting point for new
ways to visually solve problems that have proven to be very difficult.
Querying of large databases is just one example.
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Appendix: Calculating the Relevance Factors

Calculating the Distance

The first step in calculating the relevance factor for each data item is
to determine the distance between attribute and corresponding query
values. The distance functions used in this step are data type and appli-
cation dependent. In some cases, even for a single data type multiple
distance functions may be useful. For number types such as integer or
real and other metric types such as date, the distance of two values is
easily determined by their numerical difference. For non-metric types
such as enumerations with a non-interpretable distance between values
(ordinal types e.g. grades) or with non-comparable values (nominal
types e.g. professions), there is no obvious way to determine the dis-
tance. For ordinal types, the distance may be defined by some domain-
specific distance function or by a distance matrix containing the dis-
tances for all pairs of values. A distance matrix may also be useful for
nominal types but, in some cases, even a constant value may be an ad-
equate distance. For the data type string, there are many possibilities to
calculate the distance. Depending on the application and the context of
the retrieval, the user may want to choose between lexicographical dif-
ference, character-wise difference, substring difference or even some
kind of phonetic difference.

Combining Distances into the Relevance Factor

The next step in calculating the relevance factor is the combination of
the independently calculated distances of the different selection predi-
cates. This, however, is not straightforward because the distances for
the different selection predicates have to be considered with respect to
the distances of the other selection predicates, and the combined dis-
tance must be defined and must be meaningful globally. One problem is
that the relative importance of the multiple selection predicates is high-
ly user and query dependent. This problem can only be solved by user
interaction since only the user is able to determine the priority of the se-
lection predicates. Therefore, it is necessary to obtain weighting factors
(wj , j ∈ 1, …, #sp) representing the order of importance of the selec-
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tion predicates from the user. A second problem is that the values cal-
culated by the distance functions may be in completely different orders
of magnitude (e.g. in a medical application, a distance of 1g/dl for Hae-
moglobin may be very high and a distance of 1,000 Erythrocytes per dl
may be very small). This problem can be solved by a normalization of
the distances. A simple normalization may be defined as a linear trans-
formation of the range [dmin, dmax] for each selection predicate to a

fixed range (e.g. [0, 255]). For combining the independently calculated
and normalized distances of multiple selection predicates into a single
distance value, we use numerical mean functions such as the weighted
arithmetic mean for ‘AND’-connected condition parts and the weighted
geometric mean for ‘OR’-connected condition parts. More exactly, for
each data item xi the combined distance is calculated as:

 in case of ‘AND’,

in case of ‘OR’.

After calculating the combined distance for the whole condition, the
relevance factor is determined as the inverse of that distance value. The
relevance factor combines the information on how well a data item ap-
proximates the query into one value representing the relevance of the
data item with respect to the query. At this point it should be mentioned,
that for special applications other specific distance functions such as the

Euclidean, Lp or the Mahalanobis distance in n-dimensional space may
be used to combine the distance values of multiple selection predicates.

Reducing the Amount of Data to be Displayed

Since the number of data items in the database may be much higher
than the number of data items that can be displayed on the screen, we
had to find adequate heuristics to reduce the amount of data and to de-
termine the data items whose distance should be displayed. The most
exact way is to use a statistic parameter, namely the α-quantile. The α-
quantile is defined as the lowest value ξα such that

Combined Distancei wj dij×
j 1=

#sp

∑=

Combined Distancei dij
wj

j 1=

#sp

∏=
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,

where 0 ≤ α ≤ 1, F(x) is the distribution and f(x) the density function.

Let r be the number of distance values that fit on the screen, #sp be the
number of selection predicates, and n be the number of data items in the
data base. Then only data items with an absolute distance in the range

[0, -quantile] are presented to the user. If negative and

positive distance values are used, then the range of values presented to
the user is given by [α0*(1-p)-quantile, (α0*(1-p) + p)-quantile] where

p =  and α0 is determined by α0-quantile = 0. In the spe-

cial case of two dimensions assigned to the two axes (c.f. section 3.2),
correspondingly the combined α-quantiles for two dimensions may be
used. For the grouping arrangement (c.f. section 3.3), the number of
data items that can be displayed on the screen is lower since multiple
pixels are needed per data value.

Appendix: Coloration of the Relevance Factors

Visualizing the relevance factors using color corresponds to the task
of mapping a color scale to a single parameter distribution. The advan-
tage of color over gray scales is that the number of just noticeable dif-
ferences (JNDs) is much higher. The main task is to find a path through
color space that maximizes the number of JNDs but, at the same time,
is intuitive for the application domain [HL 92].

In designing the system, we experimented with different colormaps.
We found that the coloration has a high impact on the intuitivity of the
system. The user, for example, may implicitly connect good answers
with light colors and bad answers with dark colors, or the user may be
accustomed to green colors for good answers and red colors for bad an-
swers (like the colors used for traffic lights). We tried many variations
of the colormap to enhance the usefulness of our system and experi-
mentally found that for our application, a colormap with quite constant

F ξα( ) f x( ) dx

∞–

ξα

∫ α= =

r
n #sp 1+( )×
----------------------------------

r
n #sp 1+( )×
----------------------------------
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saturation, an increasing value (intensity) and a hue (color) ranging
from yellow over green, blue and red to almost black are a good choice
to denote the distance from the correct answers. The color model used
in the VisDB system is a variation of the HSV model. Instead of the hex-
cone used in the HSV model, we use a circular cone with the intensity
being defined as the Euclidean distance to black and the saturation be-
ing defined as the Euclidean distance to the gray axis. In the HSV mod-
el, both parameters are determined by using the maximum of (r, g, b).
In contrast to color scales generated according to the HSV model, our
model provides color scales whose lightness ranges continuously from
light to dark colors.

Since the usefulness of colormaps varies depending on the user and
the application, we allow the users to define their own colormaps and
use them instead of our standard colormap.
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Figure 5: The VisDB System
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Figure 6: Eight-dim. data displayed with the three different Visualization Methods (1000 Data Items)
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Figure 7: Eight-dim. Data displayed with the three different Visualization Methods (7000 Data Items)
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Figure 8: Five-dimensional Artificially Generated Data Items (100,000 Data Items)

a. Basic Visualization Technique

b. 2D-Arrangement


