300 research outputs found

    Avalanche related damage potential - changes of persons and mobile values since the mid-twentieth century, case study Galtür

    Get PDF
    When determining risk related to natural hazard processes, many studies neglect the investigations of the damage potential or are limited to the assessment of immobile values like buildings. However, persons as well as mobile values form an essential part of the damage potential. Knowledge of the maximum number of exposed persons in an endangered area is of great importance for elaborating evacuation plans and immediate measures in case of catastrophes. In addition, motor vehicles can also be highly damaged, as was shown by the analysis of avalanche events. With the removal of mobile values in time as a preventive measure this kind of damage can be minimised. <P style='line-height: 20px;'> This study presents a method for recording the maximum number of exposed persons and monetarily assessing motor vehicles in the municipality of Galt&#252;r (Tyrol, Austria). Moreover, general developments of the damage potential due to significant socio-economic changes since the mid-twentieth century are pointed out in the study area. The present situation of the maximum number of persons and mobile values in the official avalanche hazard zones of the municipality is described in detail. Information on the number of persons is derived of census data, tourism and employment statistics. During the winter months, a significant increase overlaid by strong short-term fluctuation in the number of persons can be noted. These changes result from a higher demand of tourism related manpower as well as from varying occupancy rates. The number of motor vehicles in endangered areas is closely associated to the number of exposed persons. The potential number of motor vehicles is investigated by means of mapping, statistics on the stock of motor vehicles and the density distribution. Diurnal and seasonal fluctuations of the investigated damage potential are pointed out. The recording of the number of persons and mobile values in endangered areas is vital for any disaster management

    Modelling the system behaviour of wet snow avalanches using an expert system approach for risk management on high alpine traffic roads

    Get PDF
    The presented approach describes a model for a rule-based expert system calculating the temporal variability of the release of wet snow avalanches, using the assumption of avalanche triggering without the loading of new snow. The knowledge base of the model is created by using investigations on the system behaviour of wet snow avalanches in the Italian Ortles Alps, and is represented by a fuzzy logic rule-base. Input parameters of the expert system are numerical and linguistic variables, measurable meteorological and topographical factors and observable characteristics of the snow cover. Output of the inference method is the quantified release disposition for wet snow avalanches. Combining topographical parameters and the spatial interpolation of the calculated release disposition a hazard index map is dynamically generated. Furthermore, the spatial and temporal variability of damage potential on roads exposed to wet snow avalanches can be quantified, expressed by the number of persons at risk. The application of the rule base to the available data in the study area generated plausible results. The study demonstrates the potential for the application of expert systems and fuzzy logic in the field of natural hazard monitoring and risk management

    Trans-Translation in Helicobacter pylori: Essentiality of Ribosome Rescue and Requirement of Protein Tagging for Stress Resistance and Competence

    Get PDF
    BACKGROUND: The ubiquitous bacterial trans-translation is one of the most studied quality control mechanisms. Trans-translation requires two specific factors, a small RNA SsrA (tmRNA) and a protein co-factor SmpB, to promote the release of ribosomes stalled on defective mRNAs and to add a specific tag sequence to aberrant polypeptides to direct them to degradation pathways. Helicobacter pylori is a pathogen persistently colonizing a hostile niche, the stomach of humans. PRINCIPAL FINDINGS: We investigated the role of trans-translation in this bacterium well fitted to resist stressful conditions and found that both smpB and ssrA were essential genes. Five mutant versions of ssrA were generated in H. pylori in order to investigate the function of trans-translation in this organism. Mutation of the resume codon that allows the switch of template of the ribosome required for its release was essential in vivo, however a mutant in which this codon was followed by stop codons interrupting the tag sequence was viable. Therefore one round of translation is sufficient to promote the rescue of stalled ribosomes. A mutant expressing a truncated SsrA tag was viable in H. pylori, but affected in competence and tolerance to both oxidative and antibiotic stresses. This demonstrates that control of protein degradation through trans-translation is by itself central in the management of stress conditions and of competence and supports a regulatory role of trans-translation-dependent protein tagging. In addition, the expression of smpB and ssrA was found to be induced upon acid exposure of H. pylori. CONCLUSIONS: We conclude to a central role of trans-translation in H. pylori both for ribosome rescue possibly due to more severe stalling and for protein degradation to recover from stress conditions frequently encountered in the gastric environment. Finally, the essential trans-translation machinery of H. pylori is an excellent specific target for the development of novel antibiotics

    Framing vulnerability, risk and societal responses: the MOVE framework

    Get PDF
    The paper deals with the development of a general as well as integrative and holistic framework to systematize and assess vulnerability, risk and adaptation. The framework is a thinking tool meant as a heuristic that outlines key factors and different dimensions that need to be addressed when assessing vulnerability in the context of natural hazards and climate change. The approach underlines that the key factors of such a common framework are related to the exposure of a society or system to a hazard or stressor, the susceptibility of the system or community exposed, and its resilience and adaptive capacity. Additionally, it underlines the necessity to consider key factors and multiple thematic dimensions when assessing vulnerability in the context of natural and socio-natural hazards. In this regard, it shows key linkages between the different concepts used within the disaster risk management (DRM) and climate change adaptation (CCA) research. Further, it helps to illustrate the strong relationships between different concepts used in DRM and CCA. The framework is also a tool for communicating complexity and stresses the need for societal change in order to reduce risk and to promote adaptation. With regard to this, the policy relevance of the framework and first results of its application are outlined. Overall, the framework presented enhances the discussion on how to frame and link vulnerability, disaster risk, risk management and adaptation concepts

    The PDZ domain of the SpoIVB serine peptidase facilitates multiple functions

    Get PDF
    During spore formation in Bacillus subtilis, the SpoIVB protein is a critical component of the sigma (K) regulatory checkpoint. SpoIVB has been shown to be a serine peptidase that is synthesized in the spore chamber and which self-cleaves, releasing active forms. These forms can signal proteolytic processing of the transcription factor sigma (K) in the outer mother cell chamber of the sporulating cell. This forms the basis of the sigma (K) checkpoint and ensures accurate sigma (K)-controlled gene expression. SpoIVB has also been shown to activate a second distinct process, termed the second function, which is essential for the formation of heat-resistant spores. In addition to the serine peptidase domain, SpoIVB contains a PDZ domain. We have altered a number of conserved residues in the PDZ domain by site-directed mutagenesis and assayed the sporulation phenotype and signaling properties of mutant SpoIVB proteins. Our work has revealed that the SpoIVB PDZ domain could be used for up to four distinct processes, (i) targeting of itself for trans proteolysis, (11) binding to the protease inhibitor BofC, (iii) signaling of pro-sigma (K) processing, and (iv) signaling of the second function of SpoIVB

    A physical approach on flood risk vulnerability of buildings

    Get PDF
    The design of efficient hydrological risk mitigation strategies and their subsequent implementation relies on a careful vulnerability analysis of the elements exposed. Recently, extensive research efforts were undertaken to develop and refine empirical relationships linking the structural vulnerability of buildings to the impact forces of the hazard processes. These empirical vulnerability functions allow estimating the expected direct losses as a result of the hazard scenario based on spatially explicit representation of the process patterns and the elements at risk classified into defined typological categories. However, due to the underlying empiricism of such vulnerability functions, the physics of the damage-generating mechanisms for a well-defined element at risk with its peculiar geometry and structural characteristics remain unveiled, and, as such, the applicability of the empirical approach for planning hazard-proof residential buildings is limited. Therefore, we propose a conceptual assessment scheme to close this gap. This assessment scheme encompasses distinct analytical steps: modelling (a) the process intensity, (b) the impact on the element at risk exposed and (c) the physical response of the building envelope. Furthermore, these results provide the input data for the subsequent damage evaluation and economic damage valuation. This dynamic assessment supports all relevant planning activities with respect to a minimisation of losses, and can be implemented in the operational risk assessment procedure

    Nascentome Analysis Uncovers Futile Protein Synthesis in Escherichia coli

    Get PDF
    Although co-translational biological processes attract much attention, no general and easy method has been available to detect cellular nascent polypeptide chains, which we propose to call collectively a “nascentome.” We developed a method to selectively detect polypeptide portions of cellular polypeptidyl-tRNAs and used it to study the generality of the quality control reactions that rescue dead-end translation complexes. To detect nascent polypeptides, having their growing ends covalently attached to a tRNA, cellular extracts are separated by SDS-PAGE in two dimensions, first with the peptidyl-tRNA ester bonds preserved and subsequently after their in-gel cleavage. Pulse-labeled nascent polypeptides of Escherichia coli form a characteristic line below the main diagonal line, because each of them had contained a tRNA of nearly uniform size in the first-dimension electrophoresis but not in the second-dimension. The detection of nascent polypeptides, separately from any translation-completed polypeptides or degradation products thereof, allows us to follow their fates to gain deeper insights into protein biogenesis and quality control pathways. It was revealed that polypeptidyl-tRNAs were significantly stabilized in E. coli upon dysfunction of the tmRNA-ArfA ribosome-rescuing system, whose function had only been studied previously using model constructs. Our results suggest that E. coli cells are intrinsically producing aberrant translation products, which are normally eliminated by the ribosome-rescuing mechanisms

    A destabilized bacterial luciferase for dynamic gene expression studies

    Get PDF
    Fusions of genetic regulatory elements with reporter genes have long been used as tools for monitoring gene expression and have become a major component in synthetic gene circuit implementation. A major limitation of many of these systems is the relatively long half-life of the reporter protein(s), which prevents monitoring both the initiation and the termination of transcription in real-time. Furthermore, when used as components in synthetic gene circuits, the long time constants associated with reporter protein decay may significantly degrade circuit performance. In this study, short half-life variants of LuxA and LuxB from Photorhabdus luminescens were constructed in Escherichia coli by inclusion of an 11-amino acid carboxy-terminal tag that is recognized by endogenous tail-specific proteases. Results indicated that the addition of the C-terminal tag affected the functional half-life of the holoenzyme when the tag was added to luxA or to both luxA and luxB, but modification of luxB alone did not have a significant effect. In addition, it was also found that alteration of the terminal three amino acid residues of the carboxy-terminal tag fused to LuxA generated variants with half-lives of intermediate length in a manner similar to that reported for GFP. This report is the first instance of the C-terminal tagging approach for the regulation of protein half-life to be applied to an enzyme or monomer of a multi-subunit enzyme complex and will extend the utility of the bacterial luciferase reporter genes for the monitoring of dynamic changes in gene expression
    corecore