78 research outputs found
Deuterium- and Alkyne-Based Bioorthogonal Raman Probes for In Situ Quantitative Metabolic Imaging of Lipids within Plants
Plants can rapidly respond to different stresses by activating multiple signaling and defense pathways. The ability to directly visualize and quantify these pathways in real time using bioorthogonal probes would have practical applications, including characterizing plant responses to both abiotic and biotic stress. Fluorescence-based labels are widely used for tagging of small biomolecules but are relatively bulky and with potential effects on their endogenous localization and metabolism. This work describes the use of deuterium- and alkyne-derived fatty acid Raman probes to visualize and track the real-time response of plants to abiotic stress within the roots. Relative quantification of the respective signals could be used to track their localization and overall real-time responses in their fatty acid pools due to drought and heat stress without labor-intensive isolation procedures. Their overall usability and low toxicity suggest that Raman probes have great untapped potential in the field of plant bioengineering
Engineered Mutants of a Marine Photosynthetic Purple Nonsulfur Bacterium with Increased Volumetric Productivity of Polyhydroxyalkanoate Bioplastics
Polyhydroxyalkanoates (PHAs) are green and sustainable bioplastics that could replace petrochemical synthetic plastics without posing environmental threats to living organisms. In addition, sustainable PHA production could be achieved using marine photosynthetic purple nonsulfur bacteria (PNSBs) that utilize natural seawater, sunlight, carbon dioxide gas, and nitrogen gas for growth. However, PHA production using marine photosynthetic PNSBs has not been economically feasible yet due to its high cost and low productivity. In this work, strain improvement, using genome-wide mutagenesis coupled with high-throughput screening via fluorescence-activated cell sorting, we were able to create Rhodovulum sulfidophilum mutants with enhanced volumetric PHA productivity, with an up to 1.7-fold increase. The best selected mutants (E6 and E6M4) reached the stationary growth phase 1 day faster and accumulated the maximum PHA content 2 days faster than the wild type. Maximizing volumetric PHA productivity before the stationary growth phase is indeed an additional advantage for R. sulfidophilum as a growth-associated PHA producer
Acceleration of astrocytic differentiation in neural stem cells surviving X-irradiation
Neural stem cells (NSCs) are highly susceptible to DNA double-strand breaks; however, little is known about the effects of radiation in cells surviving radiation. Although the nestin-positive NSCs predominantly became glial fibrillary acidic protein (GFAP)-positive in differentiation-permissive medium, little or no cells were GFAP positive in proliferation-permissive medium. We found that more than half of the cells surviving X-rays became GFAP positive in proliferation-permissive medium. Moreover, localized irradiation stimulated differentiation of cells outside the irradiated area. These results indicate for the first time that ionizing radiation is able to stimulate astrocyte-specific differentiation of surviving NSCs, whose process is mediated both by the direct activation of nuclear factor-jB and by the indirect bystander effect induced by X-irradiation
A nationwide, multi-center, retrospective study of symptomatic small bowel stricture in patients with Crohn\u27s disease.
BACKGROUND:Small bowel stricture is one of the most common complications in patients with Crohn\u27s disease (CD). Endoscopic balloon dilatation (EBD) is a minimally invasive treatment intended to avoid surgery; however, whether EBD prevents subsequent surgery remains unclear. We aimed to reveal the factors contributing to surgery in patients with small bowel stricture and the factors associated with subsequent surgery after initial EBD.METHODS:Data were retrospectively collected from surgically untreated CD patients who developed symptomatic small bowel stricture after 2008 when the use of balloon-assisted enteroscopy and maintenance therapy with anti-tumor necrosis factor (TNF) became available.RESULTS:A total of 305 cases from 32 tertiary referral centers were enrolled. Cumulative surgery-free survival was 74.0% at 1 year, 54.4% at 5 years, and 44.3% at 10 years. The factors associated with avoiding surgery were non-stricturing, non-penetrating disease at onset, mild severity of symptoms, successful EBD, stricture length < 2 cm, and immunomodulator or anti-TNF added after onset of obstructive symptoms. In 95 cases with successful initial EBD, longer EBD interval was associated with lower risk of surgery. Receiver operating characteristic analysis revealed that an EBD interval of ≤ 446 days predicted subsequent surgery, and the proportion of smokers was significantly high in patients who required frequent dilatation.CONCLUSIONS:In CD patients with symptomatic small bowel stricture, addition of immunomodulator or anti-TNF and smoking cessation may improve the outcome of symptomatic small bowel stricture, by avoiding frequent EBD and subsequent surgery after initial EBD
Abnormal Localization of STK17A in Bile Canaliculi in Liver Allografts: An Early Sign of Chronic Rejection.
The biological significance of STK17A, a serine/threonine kinase, in the liver is not known. We analyzed STK17A expression in HepG2 cells and human liver tissue. Accordingly, we investigated whether STK17A could help in identifying earlier changes during the evolution of chronic rejection (CR) after liver transplantation. RT-PCR and immunofluorescence were used to analyze STK17A expression in HepG2 cells. Antibody microarray was performed using human liver samples from CR and healthy donors. Immunohistochemistry was used to verify the clinical utility of STK17A on sequential biopsies for the subsequent development of CR. A novel short isoform of STK17A was found in HepG2 cells. STK17A was localized in the nuclei and bile canaliculi in HepG2 cells and human livers. Microarray of STK17A revealed its decrease in failed liver allografts by CR. During the evolution of CR, the staining pattern of bile canalicular STK17A gradually changed from diffuse linear to focal intermittent. The focal intermittent staining pattern was observed before the definite diagnosis of CR. In conclusion, the present study was the first to find localization of STK17A in normal bile canaliculi. Abnormal expression and localization of STK17A were associated with CR of liver allografts since the early stage of the rejection process
Bile canalicular abnormalities in the early phase of a mouse model of sclerosing cholangitis.
[Background]The bile canaliculus is the smallest and first biliary channel and is formed by two or three adjacent hepatocytes. Previous studies of chronic cholangiopathies such as primary sclerosing cholangitis have focused on the bile ductules. However, little is known about the pathological alterations in bile canaliculi in the early phase of cholangiopathies. [Aim]To characterize the bile canalicular morphology in the early phase of sclerosing cholangitis we used 3, 5-diethoxycarbonyl-1, 4-dihydrocollidine-induced mouse model of sclerosing cholangitis. [Methods]Mice were fed a diet with 3, 5-diethoxycarbonyl-1, 4-dihydrocollidine (0.1%). Serum biochemical, histological, immunohistochemical, and electron microscopic analyses were performed 1, 2, 4, and 7 days after feeding. [Results]All experimental groups showed significantly increased serum aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase levels. From day 1, bile canalicular abnormalities such as dilatation and meandering and loss of microvilli were observed. After bile canalicular abnormalities had appeared, substantial infiltration of inflammatory cells was observed amongst the necrotic cells and periductal region. After these inflammatory changes, cholangiocytes proliferated in the portal area and formed ductular reactions. Finally, periductal fibrosis appeared. [Conclusion]This study provides novel evidence of the occurrence of bile canalicular abnormalities during the early phase of sclerosing cholangitis
Frequent hepatocyte chimerism in long-term human liver allografts independent of graft outcome.
Microchimerism after liver transplantation is considered to promote graft tolerance or tissue repair, but its significance is controversial. By using multiplex polymerase chain reaction (PCR) of short tandem repeat (STR) loci after laser capture microdissection of hepatocyte nuclei, we compared the proportions of recipient-derived hepatocytes in long-term stable liver allografts and late dysfunctional allografts caused by chronic rejection or idiopathic post-transplantation hepatitis. Through fluorescence in situ hybridization (FISH), we also analyzed the presence of recipient-derived Y-positive hepatocytes in the biopsies of livers transplanted from female donors to male recipients. The study population comprised 24 pediatric liver transplant recipients who survived with the initial graft, whose 10-year protocol biopsy records were available, and who had normal liver function (stable graft, SG; n=13) or a late dysfunctional graft (LDG; n=11) with similar follow-up periods (mean 10.8years in the SG group and 11.2years in the LDG group). STR analysis revealed that hepatocyte chimerism occurred in 7 of 13 (54%) SGs and 5 of 11 (45%) LDGs (p=0.68). The proportion of hepatocyte chimerism was low, with a mean of 3% seen in 2 of 3 female-to-male transplanted livers (one each of SG and LDG). In conclusion, hepatocyte chimerism was a constant event. The extent of engraftment of recipient-derived hepatocytes does not seem to correlate with the degree of hepatic injury in long-term liver allografts
Pituitary abscess presenting a very rapid progression: report of a fatal case.
Pituitary abscess is a rare disease presenting with nonspecific clinical symptoms, and diagnosis is often difficult. This disease is potentially life-threatening, but most cases have a chronic and indolent course. We report a case of a 60-year-old man with a pituitary abscess associated with pituitary adenoma who died 5 days after the onset of clinical symptoms without a definitive diagnosis. Postmortem computed tomography and autopsy findings revealed a sellar mass with cystic change and extension toward the optic chiasm. Histopathology of the lesion demonstrated an abscess with suppurative meningitis and encephalitis. The disturbance of the cardiac autonomic nervous system because of hypothalamus involvement was suggested as the cause of rapid progression and death. This case provides useful information for clinicians to avoid a lethal outcome
Accelerated telomere reduction and hepatocyte senescence in tolerated human liver allografts.
This work was supported by a Grant-in-Aid from the Japan Society for the Promotion of Science (23590424) to AM-H.[Background]In living donor liver transplantation, the biological organ age of the donated allograft is unknown in young patients who receive grafts from older donors. Few studies have focused on the effects of aging on allografts in the state of tolerance. The purpose of this study was to assess the biological organ age of liver grafts.[Methods]In 20 tolerated allografts over a 10-year post-transplant follow-up period, the relative telomere lengths were measured by multiplex quantitative polymerase chain reaction, and hepatocyte nuclear size and cell cycle phase markers were determined by immunohistochemistry. The results were compared with the same measurements that had been obtained prior to transplantation in the recipients' pre-implantation donor livers. Tolerance was defined strictly as a condition in which the allograft functioned normally and showed normal histology without any histological signs of rejection, fibrosis or inflammation in the absence of immunosuppression. [Results]First, telomere length correlated with chronological donor age (n = 41). Accelerated telomere reduction was seen in tolerated grafts compared with the predicted telomere length of each allograft calculated from the regression line of donor livers. Tolerated grafts were associated with higher hepatocyte p21 expression and greater nuclear area than in the donor livers prior to transplantation. [Conclusions]These findings suggest that allografts age more rapidly than in the normal population, and that grafts may reach the limit of proliferative capacity even in the state of tolerance
- …