179 research outputs found

    Hadronic Paschen-Back effect

    Full text link
    We find a novel phenomenon induced by the interplay between a strong magnetic field and finite orbital angular momenta in hadronic systems, which is analogous to the Paschen-Back effect observed in the field of atomic physics. This effect allows the wave functions to drastically deform. We discuss anisotropic decay from the deformation as a possibility to measure the strength of the magnetic field in heavy-ion collision at LHC, RHIC and SPS, which has not experimentally been measured. As an example we investigate charmonia with a finite orbital angular momentum in a strong magnetic field. We calculate the mass spectra and mixing rates. To obtain anisotropic wave functions, we apply the cylindrical Gaussian expansion method, where the Gaussian bases to expand the wave functions have different widths along transverse and longitudinal directions in the cylindrical coordinate.Comment: 8 pages, 8 figures, v3: updated to the published style on PL

    Key Interactions in Integrin Ectodomain Responsible for Global Conformational Change Detected by Elastic Network Normal-Mode Analysis

    Get PDF
    AbstractIntegrin, a membrane protein with a huge extracellular domain, participates in cell-cell and cell-extracellular-matrix interactions for metazoan. A group of integrins is known to perform a large-scale structural change when the protein is activated, but the activation mechanism and generality of the conformational change remain to be elucidated. We performed normal-mode analysis of the elastic network model on integrin αVβ3 ectodomain in the bent form and identified key residues that influenced molecular motions. Iterative normal-mode calculations demonstrated that the specific nonbonded interactions involving the key residues work as a snap to keep integrin in the bent form. The importance of the key residues for the conformational change was further verified by mutation experiments, in which integrin αIIbβ3 was used. The conservation pattern of amino acid residues among the integrin family showed that the characteristic pattern of residues seen around these key residues is found in the limited groups of integrin β-chains. This conservation pattern suggests that the molecular mechanism of the conformational change relying on the interactions found in integrin αVβ3 is unique to the limited types of integrins

    One-loop renormalization factors and mixing coeffecients of bilinear quark operators for improved gluon and quark actions

    Get PDF
    We calculate one-loop renormalization factors and mixing coefficients of bilinear quark operators for a class of gluon actions with six-link loops and O(a)-improved quark action. The calculation is carried out by evaluating on-shell Green's functions of quarks and gluons in the standard perturbation theory. We find a general trend that finite parts of one-loop coefficients are reduced approximately by a factor two for the renormalization-group improved gluon actions compared with the case of the standard plaquette gluon action.Comment: LATTICE98(improvement), 3 page

    Development of Attitude Sensor using Deep Learning

    Get PDF
    A new method for attitude determination utilizing color earth images taken with COTS visible light camera is presented. The traditional earth camera has been used for coarse attitude determination by detecting the edge of the earth, and therefore it can only provide coarse and 2-axis information. In contrast, our method recognizes the ground pattern with an accuracy of sub-degrees and can provide 3-axis attitude information by comparing the detected ground pattern and the global map. Moreover, this method has advantages in the size, mass and cost of the detector system which consists of a cheap optical color camera and a single board computer. To demonstrate the method in space, we have developed a sensor system named “Deep Learning Attitude Sensor (DLAS)”. DLAS uses COTS camera modules and single board computers to reduce the cost. The obtained images are promptly analyzed with a newly developed real-time image recognition algorithms

    Anti-tachycardia pacing degenerated fast ventricular tachycardia into undetectable life-threatening tachyarrhythmia in a patient with non-ischemic dilated cardiomyopathy

    Get PDF
    SummaryA 45-year-old man with dilated cardiomyopathy was admitted to our hospital due to congestive heart failure (CHF). Despite the optimal medical treatment, his condition had not improved because of severe left ventricular dysfunction. Because he experienced non-sustained ventricular tachycardia (VT), a biventricular implantable cardioverter-defibrillator (Bi-V ICD) was implanted for reduction of dyssynchrony and primary prevention of lethal tachyarrhythmia. After discharge, he developed CHF and was transported to our hospital by ambulance. In the ambulance, monomorphic sustained VT with 200bpm suddenly occurred. The ICD detected it as fast VT and anti-tachycardia pacing (ATP) was delivered. After the ATP therapy, RR intervals of VT became irregular and prolonged. Ventricular fibrillation-like electrical activity was recorded by a far-field electrogram from the defibrillator, but the tachycardia cycle length exceeded 400ms which is under the tachycardia detection rate. The device failed to deliver a shock and the patient had to be rescued with an external shock. This is a rare case of fast VT that degenerated into undetectable life-threatening tachyarrhythmia by ATP

    The Effect of Cranial Change on Oropharyngeal Airway and Breathing During Sleep

    Get PDF
    Mandibular micrognathia is one of the characteristics of obstructive sleep apnea syndrome. The purpose of this study was to assess the effects of bimaxillary surgery without maxillary advancement on the upper airway using computational fluid dynamics (CFD) results of comparing pre- and post-operative finite element model. Seven female patients with jaw deformity, who underwent two-jaw surgery (Le Fort1 osteotomy and bilateral sagittal split ramus osteotomy; BSSRO) were enrolled. Maxillary was moved for correcting occlusal plane and mandibular was moved to advancement. Pharyngeal airway space and breathing during sleep were evaluated, comparing the periods of 2 days before and 6 months after the operation. The cross-sectional area of the level of the hard palate (HP) and the level of the tip of the uvula (TU), and airway volume of total, HP-TU, and TP- the level of the base of the epiglottis (BE) were increased. AI and AHI in 2 days before and 6 months after were decreased. As the result of nasal ventilation condition, velocity of HP and TU in 2 days before and 6 months after were decreased. We think that it was revealed that movement of the maxilla without advancement did not affect to the morphology and function of airway

    Development and Initial On-orbit Performance of Multi-Functional Attitude Sensor using Image Recognition

    Get PDF
    This paper describes a multi-functional attitude sensor mounted on the “Innovative Satellite 1st” led by Japan Aerospace Exploration Agency which was launched in January 2019. In order to achieve the high accuracy determination in low cost, we developed a novel attitude sensor utilizing real-time image recognition technology, named “Deep Learning Attitude Sensor (DLAS)”. DLAS has two type of attitude sensors: Star Tracker(STT) and Earth Camera (ECAM). For the low-cost development, we adopted commercial off-the-shelf cameras. DLAS uses real-time image recognition technology and a new attitude determination algorithm. In this paper, we present the missions, methods and system configuration of DLAS and initial results of on-orbit experiment that was conducted after the middle of February 2019, and it is confirmed that attitude determinations using ECAM and STT are performed correctly

    Reducing Residual-Mass Effects for Domain-Wall Fermions

    Full text link
    It has been suggested to project out a number of low-lying eigenvalues of the four-dimensional Wilson--Dirac operator that generates the transfer matrix of domain-wall fermions in order to improve simulations with domain-wall fermions. We investigate how this projection method reduces the residual chiral symmetry-breaking effects for a finite extent of the extra dimension. We use the standard Wilson as well as the renormalization--group--improved gauge action. In both cases we find a substantially reduced residual mass when the projection method is employed. In addition, the large fluctuations in this quantity disappear.Comment: 18 pages, 10 figures, references updated, comments adde
    corecore