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ABSTRACT 
A new method for attitude determination utilizing color earth images taken with COTS visible light camera is 
presented. The traditional earth camera has been used for coarse attitude determination by detecting the edge of the 
earth, and therefore it can only provide coarse and 2-axis information. In contrast, our method recognizes the ground 
pattern with an accuracy of sub-degrees and can provide 3-axis attitude information by comparing the detected ground 
pattern and the global map.  Moreover, this method has advantages in the size, mass and cost of the detector system 
which consists of a cheap optical color camera and a single board computer. To demonstrate the method in space, we 
have developed a sensor system named “Deep Learning Attitude Sensor (DLAS)”.  DLAS uses COTS camera modules 
and single board computers to reduce the cost. The obtained images are promptly analyzed with a newly developed 
real-time image recognition algorithms.  

INTRODUCTION 
In these days, Nano satellites or CubeSats, which are 
much smaller than conventional satellites, provide space 
access to a broader range of satellite users. Recently, the 
importance of small satellites has increased and more 
than 100 small satellites are launched in a year. The low 
development cost and frequent launch opportunities 
enable variety of challenging missions. For those reasons, 
many countries have been putting much effort into the 
research and the development in this new space 
technology region. Moreover, recent innovations in the 
area of IoT has realized low cost and high-performance 
computers at the same time, the size of which are pretty 
small enough to be the on-board computers for Nano 
satellites. Therefore, we propose a multifunctional low-
cost 3-axis attitude sensor using commercially available 
devices. Our attitude sensor has advantages in the size, 
mass and cost of the detector system which consists of a 
cheap optical color camera and an onboard computer. 
High-performance onboard computers enable us to 
perform real-time image recognition using machine 
learning on orbit, which is one of the main idea of our 3-
axis attitude sensor. The camera and the onboard 
computer can also be used for the other purpose, 
satellite's selfie or earth observation, as well as the 
attitude determination, which might be convenient for 
CubeSats with limited payloads. The method of machine 
learning has become one of the essential ways for 
classifying satellite images. However, most of satellite 
image classifications are based on a ground level data 
analysis after downlinking the telemetry. Those image 
processing are driven by a high-performance computer 
which has a multiple GPUs inside. The real time image 

recognition makes it possible to reduce the downlink 
data drastically. In addition, the recognition result can 
also be used for disaster detection, ship detection and 
object detection such as for debris as well as being the 
key to the low-cost 3-axis attitude sensor. We named our 
3-axis attitude sensor “Deep Learning Attitude Sensor 
(DLAS)” aboard a technology demonstration satellite of 
JAXA, which will be launched in 2019. DLAS uses 
COTS camera modules and single board computers to 
reduce the cost. The obtained images are promptly 
analyzed with a newly developed real-time image 
recognition algorithm customized for small satellite 
missions.  

The attitude determination process consists of three 
steps: 2-axis attitude determination, image recognition, 
and 3-axis attitude determination. In this paper, we 
summarize the algorithm of our newly developed 3-axis 
attitude sensor focusing on the image recognition using 
machine learning.  

METHODOLOGY 
As we mentioned above, our 3-axis attitude 
determination consists of 3 steps. First step is 2-axis 
determination, which determine the nadir vector of a 
satellite. Next step, we utilize deep learning techniques 
to identify objects in satellite images and classify them 
into multiple categories such as sea, land or cloud. 
Finally, DLAS determines the attitude angle around the 
nadir vector using a simple matching technique for 
finding the classified land features from the global map, 
and then determines the complete attitude angle of the 
satellite.  
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To explain the algorithm, a coordinate system along with 
its origin must be chosen. Figure 1 shows the sensor 
fixed coordinate system (x, y, z), which is the right-
handed one. The origin of the coordinate system 
corresponds to the earth camera’s focal point and its 
sight direction corresponds to –z direction. It is 
reasonable to assume that the earth camera is fixed on a 
spacecraft’s body frame. Therefore, coordinate 
conversion from the sensor fixed coordinate system to 
body fixed coordinate system can be determined 
uniquely. A projection of objects in three-dimensional 
space to two dimensional pictures can be modeled as 
follows (Figure 1). A point in 3D space (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖) 
would be projected to two-dimensional plane(𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖). 

 

Figure 1: Coordinate System 

2-axis Attitude Determination 

In the process of 2-Axis attitude determination, our 
sensor on a satellite automatically estimate the nadir 
direction vector by detecting the edge of the earth. Our 
DLAS project utilizes wide-field cameras consist of 
small CMOS sensors. The earth image took from the 
camera on a satellite may contain only a small part of 
the earth.  Even in this case, our algorithm makes it 
possible to determine the nadir vector of the satellite.  

We faced a couple of issues when we try to detect the 
edge of the earth. First, if the edge of the earth is not on 
the center of the picture, it is difficult to determine the 
center of the circle, the nadir direction, because of the 
distortion. Thus, we project the image to an imaginary 
unit sphere (Figure 2) and the circle on the unit sphere 
will not be distorted anymore, only if the ellipticity of 
the earth can be ignored. 

 
Figure 2: Nadir Direction Determination 1 

Detecting the edge between the earth and the space 
precisely was also one of the difficult problems. 
Sometimes earth images took from a satellite contains 
blackish land like sea, desert or lake. Since we use 
first-order-derivative for edge detection, sometimes 
misdetection occur depending on the image. We 
introduced the RANSAC (Random Sampling 
Consensus) algorithm [2] to accurately detect the nadir 
vector. The distance 𝑑𝑑  between the origin and the 
circle on the imaginary unit sphere (see Figure 3) can 
be estimated from the diameter of the earth and the 
spacecraft altitude. 

 
Figure 3: The Distance d 

We, then, estimate the parameters as follows. The 
algorithm: 

1. Selects 3 data (edge points) at random. 

2. Determines a circle on the imaginary unit 
sphere. 

3. Estimates the distance d. 

4. Finds how many edge points fit the circle with 
parameter d within a given tolerance. 

5. Repeats 1-4 several times and accepts the 
parameter if the number of the edge points are 
large enough. 

Image recognition using deep learning 
After determining nadir vector, we introduced deep 
learning techniques to identify objects in satellite images 
and classify them into multiple classes. The 
classification of images using deep learning has 
developed rapidly in recent years. We developed our 
own software that could classify images under the 
conditions of limited performance and electricity. We 
propose simple neural network called single-hidden-
layer Multi-Layer-Perceptron (MLP). We developed this 
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MLP network without using any framework. This 
network was mounted on the on-board computer 
“Raspberry Pi 3 Model B” and going to be launched as 
DLAS through the program of JAXA’s innovative 
satellite technology demonstration. These image 
recognition processes eliminate the disturbance such as 
cloud, which leads to the 3rd axis attitude determination. 

MLP 

MLP is the simplest neural network inspired by the 
structure and function of the brain. Our image 
recognition algorithm is the combination of MLP and 
sliding window approach, which is common in the area 
of image recognition.  

For the reasons mentioned below, we intentionally 
avoid using Convolutional Neural Networks (CNNs) in 
the process of sliding window. 

1. CNN has a multiple convolution layer, which 
increase the processing time. 

2. Since 16 × 16  pixel window does not have 
much information, it does not make much 
difference between MLP and CNN. 

3. In our DLAS project, we plan to perform 
relearning after acquiring the images took 
from the satellite. Therefore, we must be 
careful with the number of weights 
(parameter) in the network. The fewer 
parameter it becomes, the less command we 
needed. 

A Sliding Window Approach 

The classification of images using deep learning has 
developed rapidly in recent years. The appearance of a 
computer with high-performance GPU has led to rapid 
developments in the area. Using these types of computer 
enabled pixel-based classification [3] in the image 
recognition area. However, the on-board computer we 
have selected in DLAS project is Raspberry Pi 3 Model 
B. The performance of this types of computer is usually 
much lower than a computer that has GPU inside. For 
those reasons, the network and algorithm on our DLAS 
project must be simple enough to achieve both speed and 
accuracy on the on-board computer. We therefore 
introduced sliding window approach in the process of 
image recognition using MLP network. A “window” is a 
fixed rectangular region that slides across an image. We 
determined the best size of a window,16 × 16 which is 
suitable for processing time and accuracy for attitude 
determination. For each of these windows, we apply an 
image classification using MLP to determine the land 
types such as sea, city, cloud, etc. (See figure 4). Since 

we use visible light cameras, the number of input is 16×
16 × 3  pixels. However, we performed some 
preprocessing such as selecting the feature or color 
conversion to reduce the processing time and to improve 
accuracy. 

 

Figure 4: Image Recognition Algorithm 

Preprocessing 

In order to remove irrelevant and redundant data in the 
image, we performed preprocessing before putting them 
into the neural network. Since we avoid using CNN, 
feature selection becomes a difficult problem. It is 
almost impossible to select feature which is the most 
useful for our dataset. Therefore, we selected a couple of 
features and tested them by using the ISS images in the 
course of training and classification (see figure 5).  

 

Figure 5 : Image took from the International Space 
Station [4] 
The feature we finally selected is the histogram. We 
calculate the histogram in each window and reduce the 
dimension by dividing it into 16 pieces. Therefore, the 
dimension of the input for the MLP network has reduced 
256 to 16, which is suitable for the processing time, the 
parameter and the accuracy. In addition, we performed 
color conversion to the entire training image before the 
preprocessing.  

Training 

JAXA’s innovative satellite will orbit low altitude of 
500km around the earth and it is close to the orbit of ISS, 
which is around 408km. Hence, we use images sent from 
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the ISS as training data as shown in figure 5. In the 
process of training, we first need to create huge dataset 
from the ISS images. Dataset is an integral part of the 
field of deep learning and it influences the result of the 
training. In this network, we categorize the image into 10 
classes as shown in Table 1. A total of 100000 data 
(window) was collected from the ISS’s images. We then 
normalized each image and trained MLP network with 
these data. After we finished training, we passed the 
trained data to the classifier and execute classification on 
the on-board computer.  

Table 1: Dataset Description 

Class 
No. 

Number 
of 

Training 
Data 

Number 
of Testing 

Data 
Classes 

1 

8000 2000 

Thick Cloud 

2 Thin Cloud 

3 Foggy Cloud 

4 Sea 

5 Yellow Land(Desert) 

6 Red Land(Desert) 

7 Black Land(Desert) 

8 Forest 

9 City 

10 Space 

During the training, we trained a few different types of 
MLP (See Table 2). We changed the number of the nodes, 
and the color Space. We then evaluated these networks 
by generating Confusion Matrix.  

Table 2: Trained Model 

Model 
Unit Number of 
Hidden Layer 

Color Space 

MLP 
(1 Hidden Layer) 

20,40,60,100,120 RGB, HSV 

Classification 

In the classification process, the classifier repeats 
following 1-3 process for every single window. The 
algorithm: 

1. Cuts out every 16 × 16  pixels rectangular 
region. 

2. Performs preprocessing.  

3. Categorize each of the window into 10 classes. 

Since the resolution of the DLAS camera is 3280 ×
2464  pixel, the picture can be divided into 31570 
windows. It is remarkable that the categorization of the 
8M pixels image can be done only in 3 seconds on the 
computer “Raspberry Pi 3 Model B” which has no GPU 
inside. In the preprocessing, as we mentioned above, we 
extracted histogram from each window as a feature of 
the window.  

It is also possible to change the size of a hidden layer, 
nodes and an output layer even if it is orbiting around 
the earth.  

3-Axis Attitude Determination 
We can finally determine the attitude angle around the 
nadir vector using a simple matching technique for 
finding the classified land features from the global map. 
We applied a template matching method to search and 
find the location of the classified image, which 
determines the attitude angle. The disturbances, such as 
clouds, interrupt us to introduce characteristic point 
matching-based methods such as SIFT. The procedure to 
determine the angle around the nadir vector are shown in 
Figure 6. The algorithm: 

1. Generates imaginary pictures with all the 
possible angles around the nadir vector from 
the stored catalog earth image (figure 6). 
Position data from GPS and 2-axis attitude 
determination results enable us to set a limit to 
the relative attitude. 

2. Calculates the accurate similarity of the image 
recognition result with the generated catalog 
images by using a template matching 
technique. In this process, we eliminate the 
disturbances such as cloud.  

3. Ends by obtaining the angle with the highest 
value in all the generated catalog images. 

 

Figure 6: Procedure of 3 axis Attitude Determination 

・・・

2)Template
matching

Image recognition result 1)Catalog image

Repeat changing 
the third attitude 
parameter

3) The most likely 
catalog image

Determine the third 
attitude parameter



KOIZUMI 5 32nd Annual AIAA/USU 
  Conference on Small Satellites 

RESULTS 

The test result of the Image recognition 
We first tested the classifier by using the ISS images. 
Table 3 shows the accuracy and the processing time. We 
used Raspberry Pi 3 Model B to calculate the processing 
time. As shown in Table 1, the calculation of the 
accuracy was conducted with testing data. 

Table 3: Test results of the Trained Model 

No. 

PARAMETER EVALUATION 

Model Unit 
Number 

Color 
Space 

Accuracy 
[%] 

Time[s] 

1 

MLP 
(1 Hidden 

Layer) 

20 

RGB 

98.85 2.83 

2 40 90.23 3.46 

3 60 90.35 4.18 

4 80 90.56 4.89 

5 100 90.55 5.60 

6 120 90.50 6.18 

7 

MLP 
(1 Hidden 

Layer) 

20 

HSV 

91.64 3.04 

8 40 91.99 3.62 

9 60 92.06 4.29 

10 80 92.2 4.97 

11 100 92.2 5.71 

12 120 92.17 6.37 

 

There is a clear difference between the two color spaces, 
RGB and HSV. Even though it requires processing time 
for the HSV classifier, the accuracy of that classifier 
excelled RGB classifier. We therefore selected the 
classifier MLP_1 with the color space HSV and 20 units 
in a hidden layer. Figure 8 and Figure 9 are the confusion 
matrix and the scene classification result of the model 1 
and 7 in Table 3.  The tested image is the picture shown 
in Figure 5, which was not included in the training 
dataset.  

 

Figure 7: The Class Description in  
Figure 8 and Figure 9 

 
 

 

Figure 8 : Confusion matrix and the result of scene 
classification by the model No.1 in Table 3 

 

Figure 9: Confusion matrix and the result of scene 
classification by the model No.7 in Table 3 
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The both precision and recall of the HSV classifier 
exceed that of the RGB classifier except City and Forest. 
However, classifying the Forest and the Black Land are 
sometimes confusing even for humans. Classifying 
Forest as Black Land does not affect the 3-axis attitude 
determination since both of the classes are defined as 
land in the matching process. When it comes to City, the 
difference can be negligible. Therefore, we concluded 
that the classifier of the HSV exceeds that of the RGB. 
The results of scene classification also makes it clear that 
the misdetection of the city with clouds and vice versa 
happens frequently. To improve the accuracy, we 
eliminated Foggy Cloud and City. Not only that, we set 
a certain threshold value to the Softmax Function in the 
output layer and eliminated the classified result of each 
window with the output of low probability(The red dots 
in Figure 11). The result is shown in Figure 10 and 11.  

 

Figure 10: 7 classes’ scene classification using model 
No.7 in Table 3.  

 

Figure 11: 7 classes’ scene classification using model 
No.7 in Table 3. (The threshold setting: 70%) 

The performance test of 3-axis attitude 
determination 
We also tested the entire sequence, the attitude 
determination, to make sure if our sensor, DLAS, works 
correctly on orbit. Since the images took from the ISS do 
not contain the attitude information, we generated the 
simulated earth images using a 3D rendering software 
“Maya” with a high-resolution image of the earth “Blue 
Marble: Next Generation” provided by NASA. We, then, 
projected them on the screen as shown in Figure 12.  

 

Figure 12: Performance test image 
We tested 8 images and the results are shown in Table 4. 
The 2-axis attitude determination tends to fail by the 
misdetection of edges when the blackish sea or other 
blackish land projected on an image. When it comes to 
image recognition, it fails when there is only a sea or land 
in an image as well as the existence of the blackish land. 
The image generated with “Blue Marble: Next 
Generation” was actually not a real image took on orbit 
entirely. Therefore, the image recognition result tends to 
be less accurate than the real images took from the 
satellite. The error value of the attitude from the 
performance test are listed in Table 4.  

Table 4: Performance test result 

No. 

2-axis attitude 
determination 

3rd axis attitude 
determination 

Time[s] |Error|[°] |Error|[°] 

𝜃𝜃 𝜙𝜙 𝜓𝜓 

1 1.65 1.71 1.71 7.96 

2 0.67 0.05 0.79 5.66 

3 0.07 0.25 0.79 5.73 

4 0.48 0.35 0.88 5.88 

5 0.23 0.15 0.89 5.76 

6 0.19 0.31 0.58 5.62 

7 1.00 0.23 2.32 5.61 

8 0.06 0.18 0.12 5.68 

One of the 2-axis attitude determination simulation result 
(No.3 in Table 4) is shown in Figure 13. The red points 
are the detected edge of the earth, and the yellow curve 
line is estimated edge which is calculated on the 
imaginary unit sphere.  Even if a small misdetection 
occurs, the algorithm can exclude them correctly.  
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Figure 13: Simulation picture and the result of the 
earth edge detection 
The image recognition was then performed and the result 
is shown in Table 5. Since the monitor used in the test 
could not portray enough contrast, the results has 
become a bit rough. We set the threshold of the softmax 
function high, which is 85%, to avoid the noise from the 
display. 

Table 5: The result of the scene classification in 
Table 4dis 

No. 
|Error|[°] Captured image & 

the result of 
the image recognition 𝜓𝜓 

1 1.71 

 

2 0.79 

 

3 0.79 

 

4 0.88 

 

5 0.89 

 

The red dots are the eliminated classified results with the 
output of low probability in the softmax function. 
Because of the noise and the brightness from the display, 
the classified results from the noise are successfully 
eliminated (The red dot in the figures). The misdetection 
of the Space is also because of the brightness. These 
results proves the validity of the proposed algorithm. 

CONCLUSION 
The attitude determination algorithm we proposed 
archives good performance on various images.   The 
processing time of the entire attitude determination is 
under 6 seconds. We have to remember that the network 
model has to be selected carefully since it depends on the 
performance of the on-board computers. We are sure that 
our algorithm can be developed deeper and become more 
precise in the era of IoT innovations. 

FUTURE WORK 
The image segmentation using deep learning is now 
popular in the area of image recognition. We will apply 
one of the image segmentation techniques: U-net [5], 
which is convolutional network architecture for fast and 
precise segmentation of images, developed for 
biomedical image segmentation (see figure 14). When it 
comes to U-net, it is still on a test phase and is not 
mounted on our DLAS project. Therefore, we only 
introduce the idea of how we are planning to use the 
result of the U-net in this section.  

 

Figure 14 : U-net architecture [5] 

Methodology 

We trained the network using ISS images. As a trial, we 
created Ground Truth data from 3 images (512×512 
pixel) shown in Table 6. Since U-net uses image 
segmentation techniques, we do not need to classify the 
images into 7-10 classes. Therefore, we defined 4 
classes: land, sea, cloud and space, which is the 
minimum required classes in the process of 3-axis 
attitude determination. This network has advantages in 
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the accuracy since it classify the image on a pixel bases 
and has the unique architecture. In addition, we do not 
need to separate the process of 2-axis attitude 
determination and the image recognition since we use the 
pixel based classification. The edge detection using first-
order-derivative process can be eliminated if the image 
recognition process can detect the earth edge precisely.  

Table 6: Trained images and GT for U-net 

Image Ground Truth Results 

   

 

Trial 

We tested 2 images and the results are show in Table 7. 
The trial was conducted by the high-performance 
computer which has multiple GPUs inside. The 
processing time of the U-net will certainly exceed that of 
the MLP. Therefore, we will introduce another single 
board computer which has GPU inside. It goes without 
saying that the processing time is the most important part 
for attitude determination and we will examine it in the 
future. We, therefore, have not yet reached the point 
where we examine and consider the validity of this 
network on orbit. However, we are sure that the pixel 
based classification enable more precise 3-axis 
determination. Our goal is a real time image recognition. 
We have to improve networks, the algorithm and the 
hardware to classify the image on orbit and perform 3-
axis determination using image segmentation. 

 

 

Table 7: Test result using U-net 

Image Result 
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