752 research outputs found

    Climigration? Population and climate change in Arctic Alaska

    Get PDF
    Residents of towns and villages in Arctic Alaska live on “the front line of climate change.” Some communities face immediate threats from erosion and flooding associated with thawing permafrost, increasing river flows, and reduced sea ice protection of shorelines. The term climigration, referring to migration caused by climate change, originally was coined for these places. Although initial applications emphasized the need for government relocation policies, it has elsewhere been applied more broadly to encompass unplanned migration as well. Some historical movements have been attributed to climate change, but closer study tends to find multiple causes, making it difficult to quantify the climate contribution. Clearer attribution might come from comparisons of migration rates among places that are similar in most respects, apart from known climatic impacts. We apply this approach using annual 1990–2014 time series on 43 Arctic Alaska towns and villages. Within-community time plots show no indication of enhanced out-migration from the most at-risk communities. More formally, there is no significant difference between net migration rates of at-risk and other places, testing several alternative classifications. Although climigration is not detectable to date, growing risks make either planned or unplanned movements unavoidable in the near future

    Attractor Universe in the Scalar-Tensor Theory of Gravitation

    Full text link
    In the scalar-tensor theory of gravitation it seems nontrivial to establish if solutions of the cosmological equations in the presence of a cosmological constant behave as attractors independently of the initial values. We develop a general formulation in terms of two-dimensional phase space. We show that there are two kinds of fixed points, one of which is an attractor depending on the coupling constant and equation of state. In the case with a power-law potential in the Jordan frame, we also find new type of inflation caused by the coupling to the matter fluid

    Dynamical Diffraction Theory for Wave Packet Propagation in Deformed Crystals

    Full text link
    We develop a theory for the trajectory of an x ray in the presence of a crystal deformation. A set of equations of motion for an x-ray wave packet including the dynamical diffraction is derived, taking into account the Berry phase as a correction to geometrical optics. The trajectory of the wave packet has a shift of the center position due to a crystal deformation. Remarkably, in the vicinity of the Bragg condition, the shift is enhanced by a factor ω/Δω\omega /\Delta \omega (ω\omega: frequency of an x ray, Δω\Delta\omega: gap frequency induced by the Bragg reflection). Comparison with the conventional dynamical diffraction theory is also made.Comment: 4 pages, 2 figures. Title change

    Influenza A M2 Protein Conformation Depends On Choice Of Model Membrane

    Get PDF
    While crystal and NMR structures exist of the influenza A M2 protein, there is disagreement between models. Depending on the requirements of the technique employed, M2 has been studied in a range of membrane mimetics including detergent micelles and membrane bilayers differing in lipid composition. The use of different model membranes complicates the integration of results from published studies necessary for an overall understanding of the M2 protein. Here we show using site-directed spin-label EPR spectroscopy (SDSL-EPR) that the conformations of M2 peptides in membrane bilayers are clearly influenced by the lipid composition of the bilayers. Altering the bilayer thickness or the lateral pressure profile within the bilayer membrane changes the M2 conformation observed. The multiple M2 peptide conformations observed here, and in other published studies, optimistically may be considered conformations that are sampled by the protein at various stages during influenza infectivity. However, care should be taken that the heterogeneity observed in published structures is not simply an artifact of the choice of the model membrane. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 104: 405–411, 2015

    On the Quark Mass Dependence of Two Nucleon Observables

    Full text link
    We study the implications of lattice QCD determinations of the S-wave nucleon-nucleon scattering lengths at unphysical light quark masses. It is found that with the help of nuclear effective field theory (NEFT), not only the quark mass dependence of the effective range parameters, but also the leading quark mass dependence of all the low energy deuteron matrix elements can be obtained. The quark mass dependence of deuteron charge radius, magnetic moment, polarizability and the deuteron photodisintegration cross section are shown based on the NPLQCD lattice calculation of the scattering lengths at 354 MeV pion mass and the NEFT power counting scheme of Beane, Kaplan and Vuorinen. Further improvement can be obtained by performing the lattice calculation at smaller quark masses. Our result can be used to constrain the time variation of isoscalar combination of u and d quark mass m_q, to help the anthropic principle study to find the m_q range which allows the existence of life, and to provide a weak test of the multiverse conjecture.Comment: 18 pages, 5 figure

    A low-energy effective Yang-Mills theory for quark and gluon confinement

    Full text link
    We derive a gauge-invariant low-energy effective model of the Yang-Mills theory. We find that the effective gluon propagator belongs to the Gribov-Stingl type and agrees with it when a mass term which breaks nilpotency of the BRST symmetry is included. We show that the effective model with gluon propagator of the Gribov-Stingl type exhibits both quark and gluon confinement: the Wilson loop average has the area law and the Schwinger function violates reflection positivity. However, we argue that both quark and gluon confinement can be obtained even in the absence of such a mass term.Comment: 5 pages, no figures; accepted for publication in Physical Review D (Rapid Communication

    Equilibrium Configurations of Strongly Magnetized Neutron Stars with Realistic Equations of State

    Full text link
    We investigate equilibrium sequences of magnetized rotating stars with four kinds of realistic equations of state (EOSs) of SLy (Douchin et al.), FPS (Pandharipande et al.), Shen (Shen et al.), and LS (Lattimer & Swesty). Employing the Tomimura-Eriguchi scheme to construct the equilibrium configurations. we study the basic physical properties of the sequences in the framework of Newton gravity. In addition we newly take into account a general relativistic effect to the magnetized rotating configurations. With these computations, we find that the properties of the Newtonian magnetized stars, e.g., structure of magnetic field, highly depends on the EOSs. The toroidal magnetic fields concentrate rather near the surface for Shen and LS EOSs than those for SLy and FPS EOSs. The poloidal fields are also affected by the toroidal configurations. Paying attention to the stiffness of the EOSs, we analyze this tendency in detail. In the general relativistic stars, we find that the difference due to the EOSs becomes small because all the employed EOSs become sufficiently stiff for the large maximum density, typically greater than 1015gcm310^{15}\rm{g} \rm{cm}^{-3}. The maximum baryon mass of the magnetized stars with axis ratio q0.7q\sim 0.7 increases about up to twenty percents for that of spherical stars. We furthermore compute equilibrium sequences at finite temperature, which should serve as an initial condition for the hydrodynamic study of newly-born magnetars. Our results suggest that we may obtain information about the EOSs from the observation of the masses of magnetars.Comment: submitted to MNRA

    The Key Role of Heavy Precipitation Events in Climate Model Disagreements of Future Annual Precipitation Changes in California

    Get PDF
    Climate model simulations disagree on whether future precipitation will increase or decrease over California, which has impeded efforts to anticipate and adapt to human-induced climate change. This disagreement is explored in terms of daily precipitation frequency and intensity. It is found that divergent model projections of changes in the incidence of rare heavy (\u3e60 mm day−1) daily precipitation events explain much of the model disagreement on annual time scales, yet represent only 0.3% of precipitating days and 9% of annual precipitation volume. Of the 25 downscaled model projections examined here, 21 agree that precipitation frequency will decrease by the 2060s, with a mean reduction of 6–14 days yr−1. This reduces California\u27s mean annual precipitation by about 5.7%. Partly offsetting this, 16 of the 25 projections agree that daily precipitation intensity will increase, which accounts for a model average 5.3% increase in annual precipitation. Between these conflicting tendencies, 12 projections show drier annual conditions by the 2060s and 13 show wetter. These results are obtained from 16 global general circulation models downscaled with different combinations of dynamical methods [Weather Research and Forecasting (WRF), Regional Spectral Model (RSM), and version 3 of the Regional Climate Model (RegCM3)] and statistical methods [bias correction with spatial disaggregation (BCSD) and bias correction with constructed analogs (BCCA)], although not all downscaling methods were applied to each global model. Model disagreements in the projected change in occurrence of the heaviest precipitation days (\u3e60 mm day−1) account for the majority of disagreement in the projected change in annual precipitation, and occur preferentially over the Sierra Nevada and Northern California. When such events are excluded, nearly twice as many projections show drier future conditions

    Probabilistic estimates of future changes in California temperature and precipitation usingstatistical and dynamical downscaling

    Get PDF
    Sixteen global general circulation models were used to develop probabilistic projections of temperature (T) and precipitation (P) changes over California by the 2060s. The global models were downscaled with two statistical techniques and three nested dynamical regional climate models, although not all global models were downscaled with all techniques. Both monthly and daily timescale changes in T and P are addressed, the latter being important for a range of applications in energy use, water management, and agriculture. The T changes tend to agree more across downscaling techniques than the P changes. Year-to-year natural internal climate variability is roughly of similar magnitude to the projected T changes. In the monthly average, July temperatures shift enough that that the hottest July found in any simulation over the historical period becomes a modestly cool July in the future period. Januarys as cold as any found in the historical period are still found in the 2060s, but the median and maximum monthly average temperatures increase notably. Annual and seasonal P changes are small compared to interannual or intermodel variability. However, the annual change is composed of seasonally varying changes that are themselves much larger, but tend to cancel in the annual mean. Winters show modestly wetter conditions in the North of the state, while spring and autumn show less precipitation. The dynamical downscaling techniques project increasing precipitation in the Southeastern part of the state, which is influenced by the North American monsoon, a feature that is not captured by the statistical downscaling

    Five-dimensional Black Hole and Particle Solution with Non-Abelian Gauge Field

    Full text link
    We study the 5-dimensional Einstein-Yang-Mills system with a cosmological constant. Assuming a spherically symmetric spacetime, we find a new analytic black hole solution, which approaches asymptotically "quasi-Minkowski", "quasi anti-de Sitter", or "quasi de Sitter" spacetime depending on the sign of a cosmological constant. Since there is no singularity except for the origin which is covered by an event horizon, we regard it as a localized object. This solution corresponds to a magnetically charged black hole. We also present a singularity-free particle-like solution and a non-trivial black hole solution numerically. Those solutions correspond to the Bartnik-McKinnon solution and a colored black hole with a cosmological constant in the 4-dimensions. We analyze their asymptotic behaviors, spacetime structures and thermodynamical properties. We show that there is a set of stable solutions if a cosmological constant is negative.Comment: 17 pages, 17 figures, submitted to PR
    corecore