752 research outputs found
Climigration? Population and climate change in Arctic Alaska
Residents of towns and villages in Arctic Alaska live on “the front line of climate change.” Some communities face immediate threats from erosion and flooding associated with thawing permafrost, increasing river flows, and reduced sea ice protection of shorelines. The term climigration, referring to migration caused by climate change, originally was coined for these places. Although initial applications emphasized the need for government relocation policies, it has elsewhere been applied more broadly to encompass unplanned migration as well. Some historical movements have been attributed to climate change, but closer study tends to find multiple causes, making it difficult to quantify the climate contribution. Clearer attribution might come from comparisons of migration rates among places that are similar in most respects, apart from known climatic impacts. We apply this approach using annual 1990–2014 time series on 43 Arctic Alaska towns and villages. Within-community time plots show no indication of enhanced out-migration from the most at-risk communities. More formally, there is no significant difference between net migration rates of at-risk and other places, testing several alternative classifications. Although climigration is not detectable to date, growing risks make either planned or unplanned movements unavoidable in the near future
Attractor Universe in the Scalar-Tensor Theory of Gravitation
In the scalar-tensor theory of gravitation it seems nontrivial to establish
if solutions of the cosmological equations in the presence of a cosmological
constant behave as attractors independently of the initial values. We develop a
general formulation in terms of two-dimensional phase space. We show that there
are two kinds of fixed points, one of which is an attractor depending on the
coupling constant and equation of state. In the case with a power-law potential
in the Jordan frame, we also find new type of inflation caused by the coupling
to the matter fluid
Dynamical Diffraction Theory for Wave Packet Propagation in Deformed Crystals
We develop a theory for the trajectory of an x ray in the presence of a
crystal deformation. A set of equations of motion for an x-ray wave packet
including the dynamical diffraction is derived, taking into account the Berry
phase as a correction to geometrical optics. The trajectory of the wave packet
has a shift of the center position due to a crystal deformation. Remarkably, in
the vicinity of the Bragg condition, the shift is enhanced by a factor (: frequency of an x ray, : gap frequency
induced by the Bragg reflection). Comparison with the conventional dynamical
diffraction theory is also made.Comment: 4 pages, 2 figures. Title change
Influenza A M2 Protein Conformation Depends On Choice Of Model Membrane
While crystal and NMR structures exist of the influenza A M2 protein, there is disagreement between models. Depending on the requirements of the technique employed, M2 has been studied in a range of membrane mimetics including detergent micelles and membrane bilayers differing in lipid composition. The use of different model membranes complicates the integration of results from published studies necessary for an overall understanding of the M2 protein. Here we show using site-directed spin-label EPR spectroscopy (SDSL-EPR) that the conformations of M2 peptides in membrane bilayers are clearly influenced by the lipid composition of the bilayers. Altering the bilayer thickness or the lateral pressure profile within the bilayer membrane changes the M2 conformation observed. The multiple M2 peptide conformations observed here, and in other published studies, optimistically may be considered conformations that are sampled by the protein at various stages during influenza infectivity. However, care should be taken that the heterogeneity observed in published structures is not simply an artifact of the choice of the model membrane. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 104: 405–411, 2015
On the Quark Mass Dependence of Two Nucleon Observables
We study the implications of lattice QCD determinations of the S-wave
nucleon-nucleon scattering lengths at unphysical light quark masses. It is
found that with the help of nuclear effective field theory (NEFT), not only the
quark mass dependence of the effective range parameters, but also the leading
quark mass dependence of all the low energy deuteron matrix elements can be
obtained. The quark mass dependence of deuteron charge radius, magnetic moment,
polarizability and the deuteron photodisintegration cross section are shown
based on the NPLQCD lattice calculation of the scattering lengths at 354 MeV
pion mass and the NEFT power counting scheme of Beane, Kaplan and Vuorinen.
Further improvement can be obtained by performing the lattice calculation at
smaller quark masses. Our result can be used to constrain the time variation of
isoscalar combination of u and d quark mass m_q, to help the anthropic
principle study to find the m_q range which allows the existence of life, and
to provide a weak test of the multiverse conjecture.Comment: 18 pages, 5 figure
A low-energy effective Yang-Mills theory for quark and gluon confinement
We derive a gauge-invariant low-energy effective model of the Yang-Mills
theory. We find that the effective gluon propagator belongs to the
Gribov-Stingl type and agrees with it when a mass term which breaks nilpotency
of the BRST symmetry is included. We show that the effective model with gluon
propagator of the Gribov-Stingl type exhibits both quark and gluon confinement:
the Wilson loop average has the area law and the Schwinger function violates
reflection positivity. However, we argue that both quark and gluon confinement
can be obtained even in the absence of such a mass term.Comment: 5 pages, no figures; accepted for publication in Physical Review D
(Rapid Communication
Equilibrium Configurations of Strongly Magnetized Neutron Stars with Realistic Equations of State
We investigate equilibrium sequences of magnetized rotating stars with four
kinds of realistic equations of state (EOSs) of SLy (Douchin et al.), FPS
(Pandharipande et al.), Shen (Shen et al.), and LS (Lattimer & Swesty).
Employing the Tomimura-Eriguchi scheme to construct the equilibrium
configurations. we study the basic physical properties of the sequences in the
framework of Newton gravity. In addition we newly take into account a general
relativistic effect to the magnetized rotating configurations. With these
computations, we find that the properties of the Newtonian magnetized stars,
e.g., structure of magnetic field, highly depends on the EOSs.
The toroidal magnetic fields concentrate rather near the surface for Shen and
LS EOSs than those for SLy and FPS EOSs. The poloidal fields are also affected
by the toroidal configurations. Paying attention to the stiffness of the EOSs,
we analyze this tendency in detail. In the general relativistic stars, we find
that the difference due to the EOSs becomes small because all the employed EOSs
become sufficiently stiff for the large maximum density, typically greater than
. The maximum baryon mass of the magnetized stars
with axis ratio increases about up to twenty percents for that of
spherical stars. We furthermore compute equilibrium sequences at finite
temperature, which should serve as an initial condition for the hydrodynamic
study of newly-born magnetars. Our results suggest that we may obtain
information about the EOSs from the observation of the masses of magnetars.Comment: submitted to MNRA
The Key Role of Heavy Precipitation Events in Climate Model Disagreements of Future Annual Precipitation Changes in California
Climate model simulations disagree on whether future precipitation will increase or decrease over California, which has impeded efforts to anticipate and adapt to human-induced climate change. This disagreement is explored in terms of daily precipitation frequency and intensity. It is found that divergent model projections of changes in the incidence of rare heavy (\u3e60 mm day−1) daily precipitation events explain much of the model disagreement on annual time scales, yet represent only 0.3% of precipitating days and 9% of annual precipitation volume. Of the 25 downscaled model projections examined here, 21 agree that precipitation frequency will decrease by the 2060s, with a mean reduction of 6–14 days yr−1. This reduces California\u27s mean annual precipitation by about 5.7%. Partly offsetting this, 16 of the 25 projections agree that daily precipitation intensity will increase, which accounts for a model average 5.3% increase in annual precipitation. Between these conflicting tendencies, 12 projections show drier annual conditions by the 2060s and 13 show wetter. These results are obtained from 16 global general circulation models downscaled with different combinations of dynamical methods [Weather Research and Forecasting (WRF), Regional Spectral Model (RSM), and version 3 of the Regional Climate Model (RegCM3)] and statistical methods [bias correction with spatial disaggregation (BCSD) and bias correction with constructed analogs (BCCA)], although not all downscaling methods were applied to each global model. Model disagreements in the projected change in occurrence of the heaviest precipitation days (\u3e60 mm day−1) account for the majority of disagreement in the projected change in annual precipitation, and occur preferentially over the Sierra Nevada and Northern California. When such events are excluded, nearly twice as many projections show drier future conditions
Probabilistic estimates of future changes in California temperature and precipitation usingstatistical and dynamical downscaling
Sixteen global general circulation models were used to develop probabilistic projections of temperature (T) and precipitation (P) changes over California by the 2060s. The global models were downscaled with two statistical techniques and three nested dynamical regional climate models, although not all global models were downscaled with all techniques. Both monthly and daily timescale changes in T and P are addressed, the latter being important for a range of applications in energy use, water management, and agriculture. The T changes tend to agree more across downscaling techniques than the P changes. Year-to-year natural internal climate variability is roughly of similar magnitude to the projected T changes. In the monthly average, July temperatures shift enough that that the hottest July found in any simulation over the historical period becomes a modestly cool July in the future period. Januarys as cold as any found in the historical period are still found in the 2060s, but the median and maximum monthly average temperatures increase notably. Annual and seasonal P changes are small compared to interannual or intermodel variability. However, the annual change is composed of seasonally varying changes that are themselves much larger, but tend to cancel in the annual mean. Winters show modestly wetter conditions in the North of the state, while spring and autumn show less precipitation. The dynamical downscaling techniques project increasing precipitation in the Southeastern part of the state, which is influenced by the North American monsoon, a feature that is not captured by the statistical downscaling
Five-dimensional Black Hole and Particle Solution with Non-Abelian Gauge Field
We study the 5-dimensional Einstein-Yang-Mills system with a cosmological
constant. Assuming a spherically symmetric spacetime, we find a new analytic
black hole solution, which approaches asymptotically "quasi-Minkowski", "quasi
anti-de Sitter", or "quasi de Sitter" spacetime depending on the sign of a
cosmological constant. Since there is no singularity except for the origin
which is covered by an event horizon, we regard it as a localized object. This
solution corresponds to a magnetically charged black hole.
We also present a singularity-free particle-like solution and a non-trivial
black hole solution numerically. Those solutions correspond to the
Bartnik-McKinnon solution and a colored black hole with a cosmological constant
in the 4-dimensions. We analyze their asymptotic behaviors, spacetime
structures and thermodynamical properties. We show that there is a set of
stable solutions if a cosmological constant is negative.Comment: 17 pages, 17 figures, submitted to PR
- …