4,576 research outputs found

    Methods of teaching equitation

    Full text link
    Thesis (M.A.)--Boston University, 1949. This item was digitized by the Internet Archive

    Solar Flare Impulsive Phase Emission Observed with SDO/EVE

    Full text link
    Differential emission measures (DEMs) during the impulsive phase of solar flares were constructed using observations from the EUV Variability Experiment (EVE) and the Markov-Chain Monte Carlo method. Emission lines from ions formed over the temperature range log T = 5.8 - 7.2 allow the evolution of the DEM to be studied over a wide temperature range at 10s cadence. The technique was applied to several M- and X-class flares, where impulsive phase EUV emission is observable in the disk-integrated EVE spectra from emission lines formed up to 3 - 4 MK, and we use spatially-unresolved EVE observations to infer the thermal structure of the emitting region. For the nine events studied the DEMs exhibited a two component distribution during the impulsive phase, a low temperature component with peak temperature of 1 - 2 MK, and a broad high temperature one from 7 - 30 MK. A bimodal high temperature component is also found for several events, with peaks at 8 and 25 MK during the impulsive phase. The origin of the emission was verified using AIA images to be the flare ribbons and footpoints, indicating that the constructed DEMs represent the spatially-average thermal structure of the chromospheric flare emission during the impulsive phase.Comment: 18 pages, 6 figures, accepted for publication in Ap

    Chromospheric Velocities of a C-class Flare

    Full text link
    We use high spatial and temporal resolution observations from the Swedish Solar Telescope to study the chromospheric velocities of a C-class flare originating from active region NOAA 10969. A time-distance analysis is employed to estimate directional velocity components in H-alpha and Ca II K image sequences. Also, imaging spectroscopy has allowed us to determine flare-induced line-of-sight velocities. A wavelet analysis is used to analyse the periodic nature of associated flare bursts. Time-distance analysis reveals velocities as high as 64 km/s along the flare ribbon and 15 km/s perpendicular to it. The velocities are very similar in both the H-alpha and Ca II K time series. Line-of-sight H-alpha velocities are red-shifted with values up to 17 km/s. The high spatial and temporal resolution of the observations have allowed us to detect velocities significantly higher than those found in earlier studies. Flare bursts with a periodicity of approximately 60 s are also detected. These bursts are similar to the quasi-periodic oscillations observed at hard X-ray and radio wavelength data. Some of the highest velocities detected in the solar atmosphere are presented. Line-of-sight velocity maps show considerable mixing of both the magnitude and direction of velocities along the flare path. A change in direction of the velocities at the flare kernel has also been detected which may be a signature of chromospheric evaporation.Comment: Accepted for publication in Astronomy and Astrophysics, 5 figure

    Apollo 9 multiband photography experiment 5065 Interim post-flight calibration report

    Get PDF
    Camera and filter postflight spectrum analysis for Apollo 9 multiband photography experimen

    Fe XIII emission lines in active region spectra obtained with the Solar Extreme-Ultraviolet Research Telescope and Spectrograph

    Get PDF
    Recent fully relativistic calculations of radiative rates and electron impact excitation cross sections for Fe {\sc xiii} are used to generate emission-line ratios involving 3s2^{2}3p2^{2}--3s3p3^{3} and 3s2^{2}3p2^{2}--3s2^{2}3p3d transitions in the 170--225 \AA and 235--450 \AA wavelength ranges covered by the Solar Extreme-Ultraviolet Research Telescope and Spectrograph (SERTS). A comparison of these line ratios with SERTS active region observations from rocket flights in 1989 and 1995 reveals generally very good agreement between theory and experiment. Several new Fe {\sc xiii} emission features are identified, at wavelengths of 203.79, 259.94, 288.56 and 290.81 \AA. However, major discrepancies between theory and observation remain for several Fe {\sc xiii} transitions, as previously found by Landi (2002) and others, which cannot be explained by blending. Errors in the adopted atomic data appear to be the most likely explanation, in particular for transitions which have 3s2^{2}3p3d 1^{1}D2_{2} as their upper level. The most useful Fe {\sc xiii} electron density diagnostics in the SERTS spectral regions are assessed, in terms of the line pairs involved being (i) apparently free of atomic physics problems and blends, (ii) close in wavelength to reduce the effects of possible errors in the instrumental intensity calibration, and (iii) very sensitive to changes in Ne_{e} over the range 108^{8}--1011^{11} cm−3^{-3}. It is concluded that the ratios which best satisfy these conditions are 200.03/202.04 and 203.17/202.04 for the 170--225 \AA wavelength region, and 348.18/320.80, 348.18/368.16, 359.64/348.18 and 359.83/368.16 for 235--450 \AA.Comment: 11 pages, 8 figures, 10 tables, MNRAS, in pres

    Radiative hydrodynamic modelling and observations of the X-class solar flare on 2011 March 9

    Get PDF
    We investigated the response of the solar atmosphere to non-thermal electron beam heating using the radiative transfer and hydrodynamics modelling code RADYN. The temporal evolution of the parameters that describe the non-thermal electron energy distribution were derived from hard X-ray observations of a particular flare, and we compared the modelled and observed parameters. The evolution of the non-thermal electron beam parameters during the X1.5 solar flare on 2011 March 9 were obtained from analysis of RHESSI X-ray spectra. The RADYN flare model was allowed to evolve for 110 seconds, after which the electron beam heating was ended, and was then allowed to continue evolving for a further 300s. The modelled flare parameters were compared to the observed parameters determined from extreme-ultraviolet spectroscopy. The model produced a hotter and denser flare loop than that observed and also cooled more rapidly, suggesting that additional energy input in the decay phase of the flare is required. In the explosive evaporation phase a region of high-density cool material propagated upward through the corona. This material underwent a rapid increase in temperature as it was unable to radiate away all of the energy deposited across it by the non-thermal electron beam and via thermal conduction. A narrow and high-density (ne≤1015n_{e} \le 10^{15} cm−3^{-3}) region at the base of the flare transition region was the source of optical line emission in the model atmosphere. The collision-stopping depth of electrons was calculated throughout the evolution of the flare, and it was found that the compression of the lower atmosphere may permit electrons to penetrate farther into a flaring atmosphere compared to a quiet Sun atmosphere.Comment: 12 pages, 12 figure

    Biomechanical testing of hip protectors following the Canadian Standards Association express document

    Get PDF
    Summary A variety of hip protectors are available, but it is not clear which is the most effective and there is no standard test to evaluate their performance. This is the first study that uses a standard mechanical test on hip protectors. Some protectors perform well but others are almost ineffective, providing little to no protection to the wearer during a fall. Introduction Each year, over 70,000 patients are admitted to hospital in the UK with hip fractures. There are a variety of commercial hip protectors currently available. However, it is not explicitly clear which is the most effective with regard to maximum force attenuation, whilst still being both comfortable for the user and providing reasonable force reduction if misplaced from the intended position. The numerous test methods reported in the literature have given conflicting results, making objective comparison difficult for users, researchers, and manufacturers alike. The Canadian Standards Association (CSA) has therefore published an express document (EXP-08-17) with a draft standard test method. This paper presents initial results for a range of hip protectors. Methods Eighteen commercially available hip protectors were tested according to EXP-08-17. Each hip protector was impacted five times in correct anatomical alignment over the greater trochanter and once at 50 mm displacements in the anterior, posterior, and lateral directions. Results Considerable differences were identified between individual hip protectors in their ability to reduce impact forces on the femur (between 3% and 36% reduction in peak force). The performance was reduced when misplaced in many cases (maximum reduction only 20%). Conclusions This is the first study that uses a standard mechanical test on hip protectors. Previous studies have used a variety of methods, making it difficult to interpret results. We hope that these results using a standard test method will facilitate the effective comparison of results, as well as providing useful data for clinicians, users, and purchasers

    Understanding the evolving frontier of DSS: An empirical investigation

    Get PDF

    Desperately seeking the IS in GIS

    Get PDF
    Geographical Information Systems (GIS) are now a widespread and important form of Information Technology (IT) use. In principle, Information Systems (IS) research is concerned with all forms of IT use. Yet despite this importance, GIS remains largely invisible in IS research. This paper illustrates this separation using bibliographic data drawn from both GIS and IS. It reviews discussion within IS as to the nature of the discipline and argues for a closer coupling between IS and GIS. It discusses Spatial Data Infrastructure (SDI), mobile computing and public participation GIS as examples of spatially related fields where further IS research would be beneficial
    • …
    corecore