20 research outputs found
Accounts from developers of generic health state utility instruments explain why they produce different QALYs: a qualitative study
Purpose and setting: Despite the label generic health state utility instruments (HSUIs), empirical evidence shows that different HSUIs generate different estimates of Health-Related Quality of Life (HRQoL) in the same person. Once a HSUI is used to generate a QALY, the difference between HSUIs is often ignored, and decision-makers act as if \u27a QALY is a QALY is a QALY\u27. Complementing evidence that different generic HSUIs produce different empirical values, this study addresses an important gap by exploring how HSUIs differ, and processes that produced this difference. 15 developers of six generic HSUIs used for estimating the QOL component of QALYs: Quality of Well-Being (QWB) scale; 15 Dimension instrument (15D); Health Utilities Index (HUI); EuroQol EQ-5D; Short Form-6 Dimension (SF-6D), and the Assessment of Quality of Life (AQoL) were interviewed in 2012-2013.
Principal findings: We identified key factors involved in shaping each instrument, and the rationale for similarities and differences across measures. While HSUIs have a common purpose, they are distinctly discrete constructs. Developers recalled complex developmental processes, grounded in unique histories, and these backgrounds help to explain different pathways taken at key decision points during the HSUI development. The basis for the HSUIs was commonly not equivalent conceptually: differently valued concepts and goals drove instrument design and development, according to each HSUI\u27s defined purpose. Developers drew from different sources of knowledge to develop their measure depending on their conceptualisation of HRQoL.
Major conclusions/contribution to knowledge: We generated and analysed first-hand accounts of the development of the HSUIs to provide insight, beyond face value, about how and why such instruments differ. Findings enhance our understanding of why the six instruments developed the way they did, from the perspective of key developers of those instruments. Importantly, we provide additional, original explanation for why a QALY is not a QALY is not a QALY
Modeling Pediatric Brain Trauma: Piglet Model of Controlled Cortical Impact
The brain has different responses to traumatic injury as a function of its developmental stage. As a model of injury to the immature brain, the piglet shares numerous similarities in regards to morphology and neurodevelopmental sequence compared to humans. This chapter describes a piglet scaled focal contusion model of traumatic brain injury that accounts for the changes in mass and morphology of the brain as it matures, facilitating the study of age-dependent differences in response to a comparable mechanical trauma
Recommended from our members
Neuroblast Distribution after Cortical Impact Is Influenced by White Matter Injury in the Immature Gyrencephalic Brain
Cortical contusions are a common type of traumatic brain injury (TBI) in children. Current knowledge of neuroblast response to cortical injury arises primarily from studies utilizing aspiration or cryoinjury in rodents. In infants and children, cortical impact affects both gray and white matter and any neurogenic response may be complicated by the large expanse of white matter between the subventricular zone (SVZ) and the cortex, and the large number of neuroblasts in transit along the major white matter tracts to populate brain regions. Previously, we described an age-dependent increase of neuroblasts in the SVZ in response to cortical impact in the immature gyrencephalic brain. Here, we investigate if neuroblasts target the injury, if white matter injury influences repair efforts, and if postnatal population of brain regions are disrupted. Piglets received a cortical impact to the rostral gyrus cortex or sham surgery at postnatal day (PND) 7, BrdU 2 days prior to (PND 5 and 6) or after injury (PND 7 and 8), and brains were collected at PND 14. Injury did not alter the number of neuroblasts in the white matter between the SVZ and the rostral gyrus. In the gray matter of the injury site, neuroblast density was increased in cavitated lesions, and the number of BrdU+ neuroblasts was increased, but comprised less than 1% of all neuroblasts. In the white matter of the injury site, neuroblasts with differentiating morphology were densely arranged along the cavity edge. In a ventral migratory stream, neuroblast density was greater in subjects with a cavitated lesion, indicating that TBI may alter postnatal development of regions supplied by that stream. Cortical impact in the immature gyrencephalic brain produced complicated and variable lesions, increased neuroblast density in cavitated gray matter, resulted in potentially differentiating neuroblasts in the white matter, and may alter the postnatal population of brain regions utilizing a population of neuroblasts that were born prior to PND 5. This platform may be useful to continue to study potential complications of white matter injury and alterations of postnatal population of brain regions, which may contribute to the chronic effects of TBI in children
Recommended from our members
Development of a Model of Hemispheric Hypodensity (“Big Black Brain”)
Subdural hematoma (SDH) is the most common finding after abusive head trauma (AHT). Hemispheric hypodensity (HH) is a radiological indicator of severe brain damage that encompasses multiple vascular territories, and may develop in the hemisphere(s) underlying the SDH. In some instances where the SDH is predominantly unilateral, the widespread damage is unilateral underlying the SDH. To date, no animal model has successfully replicated this pattern of injury. We combined escalating severities of the injuries and insults commonly associated with HH including SDH, impact, mass effect, seizures, apnea, and hypoventilation to create an experimental model of HH in piglets aged 1 week (comparable to human infants) to 1 month (comparable to human toddlers). Unilateral HH evolved over 24 h when kainic acid was applied ipsilateral to the SDH to induce seizures. Pathological examination revealed a hypoxic-ischemic injury-type pattern with vasogenic edema through much of the cortical ribbon with relative sparing of deep gray matter. The percentage of the hemisphere that was damaged was greater on the ipsilateral versus contralateral side and was positively correlated with SDH area and estimated seizure duration. Further studies are needed to parse out the pathophysiology of this injury and to determine if multiple injuries and insults act synergistically to induce a metabolic mismatch or if the mechanism of trauma induces severe seizures that drive this distinctive pattern of injury
Final Roundtable
Final Roundtable. Moderated by Tim Profeta Featuring: Laura Cantral, Susan Hanna, Kristen Fletcher, Marc Hershman, Amber Mace, David Keeley, Donna Christie, Andrew Rosenberg, Josh Eagle, Steve Roady, Larry Crowder, and Mike Orbach
Genome Structural Diversity among 31 Bordetella pertussis Isolates from Two Recent U.S. Whooping Cough Statewide Epidemics
ABSTRACT During 2010 and 2012, California and Vermont, respectively, experienced statewide epidemics of pertussis with differences seen in the demographic affected, case clinical presentation, and molecular epidemiology of the circulating strains. To overcome limitations of the current molecular typing methods for pertussis, we utilized whole-genome sequencing to gain a broader understanding of how current circulating strains are causing large epidemics. Through the use of combined next-generation sequencing technologies, this study compared de novo, single-contig genome assemblies from 31 out of 33 Bordetella pertussis isolates collected during two separate pertussis statewide epidemics and 2 resequenced vaccine strains. Final genome architecture assemblies were verified with whole-genome optical mapping. Sixteen distinct genome rearrangement profiles were observed in epidemic isolate genomes, all of which were distinct from the genome structures of the two resequenced vaccine strains. These rearrangements appear to be mediated by repetitive sequence elements, such as high-copy-number mobile genetic elements and rRNA operons. Additionally, novel and previously identified single nucleotide polymorphisms were detected in 10 virulence-related genes in the epidemic isolates. Whole-genome variation analysis identified state-specific variants, and coding regions bearing nonsynonymous mutations were classified into functional annotated orthologous groups. Comprehensive studies on whole genomes are needed to understand the resurgence of pertussis and develop novel tools to better characterize the molecular epidemiology of evolving B. pertussis populations. IMPORTANCE Pertussis, or whooping cough, is the most poorly controlled vaccine-preventable bacterial disease in the United States, which has experienced a resurgence for more than a decade. Once viewed as a monomorphic pathogen, B. pertussis strains circulating during epidemics exhibit diversity visible on a genome structural level, previously undetectable by traditional sequence analysis using short-read technologies. For the first time, we combine short- and long-read sequencing platforms with restriction optical mapping for single-contig, de novo assembly of 31 isolates to investigate two geographically and temporally independent U.S. pertussis epidemics. These complete genomes reshape our understanding of B. pertussis evolution and strengthen molecular epidemiology toward one day understanding the resurgence of pertussis
Recommended from our members
Effects of postfire climate and seed availability on postfire conifer regeneration.
Large, severe fires are becoming more frequent in many forest types across the western United States and have resulted in tree mortality across tens of thousands of hectares. Conifer regeneration in these areas is limited because seeds must travel long distances to reach the interior of large burned patches and establishment is jeopardized by increasingly hot and dry conditions. To better inform postfire management in low elevation forests of California, USA, we collected 5-yr postfire recovery data from 1,234 study plots in 19 wildfires that burned from 2004-2012 and 18 yrs of seed production data from 216 seed fall traps (1999-2017). We used these data in conjunction with spatially extensive climate, topography, forest composition, and burn severity surfaces to construct taxon-specific, spatially explicit models of conifer regeneration that incorporate climate conditions and seed availability during postfire recovery windows. We found that after accounting for other predictors both postfire and historical precipitation were strong predictors of regeneration, suggesting that both direct effects of postfire moisture conditions and biological inertia from historical climate may play a role in regeneration. Alternatively, postfire regeneration may simply be driven by postfire climate and apparent relationships with historical climate could be spurious. The estimated sensitivity of regeneration to postfire seed availability was strongest in firs and all conifers combined and weaker in pines. Seed production exhibited high temporal variability with seed production varying by over two orders of magnitude among years. Our models indicate that during droughts postfire conifer regeneration declines most substantially in low-to-moderate elevation forests. These findings enhance our mechanistic understanding of forecasted and historically documented shifts in the distribution of trees