25 research outputs found

    The contribution of X-linked coding variation to severe developmental disorders

    Get PDF
    Over 130 X-linked genes have been robustly associated with developmental disorders, and X-linked causes have been hypothesised to underlie the higher developmental disorder rates in males. Here, we evaluate the burden of X-linked coding variation in 11,044 developmental disorder patients, and find a similar rate of X-linked causes in males and females (6.0% and 6.9%, respectively), indicating that such variants do not account for the 1.4-fold male bias. We develop an improved strategy to detect X-linked developmental disorders and identify 23 significant genes, all of which were previously known, consistent with our inference that the vast majority of the X-linked burden is in known developmental disorder-associated genes. Importantly, we estimate that, in male probands, only 13% of inherited rare missense variants in known developmental disorder-associated genes are likely to be pathogenic. Our results demonstrate that statistical analysis of large datasets can refine our understanding of modes of inheritance for individual X-linked disorders

    The Function of Exonuclease I in Meiotic Recombination: A Genetic and Physical Analysis

    Full text link
    Exo1 is a member of the Rad2 protein family and possesses both 5’-3’ exonuclease and 5’ flap endonuclease activities. In addition to performing a variety of functions during mitotic growth, Exo1 is also important for the production of crossovers during meiosis. However, its precise molecular role has remained ambiguous and several models have been proposed to account for the crossover deficit observed in its absence. Here, physical evidence that the nuclease activity of Exo1 is essential for normal 5’-3’ resection at the Spo11-dependent HIS4 hotspot in otherwise wild-type cells is presented. This same activity was also required for normal levels of gene conversion at the locus. Nevertheless, gene conversions were frequently observed at a distance beyond that at which resection was readily detectable arguing that it is not the extent of the initial DNA end resection that limits heteroduplex formation. In addition to these nuclease-dependent functions, nuclease-deficient exo1 mutants were found to be capable of maintaining crossing-over at wild-type levels in a number of genetic intervals, suggesting that Exo1 also plays a nuclease-independent role in crossover promotion. Furthermore, the results of both physical and genetic analyses imply that Sgs1 does not contribute significantly to resection during meiosis in exo1∆ cells, indicating that the mitotic and meiotic resection machinery differs. In light of these new insights, a model describing the formation of heteroduplex DNA and crossovers during meiosis is proposed

    The function of exonuclease I in meiotic recombination : a genetic and physical analysis

    No full text
    Exo1 is a member of the Rad2 protein family and possesses both 5’-3’ exonuclease and 5’ flap endonuclease activities. In addition to performing a variety of functions during mitotic growth, Exo1 is also important for the production of crossovers during meiosis. However, its precise molecular role has remained ambiguous and several models have been proposed to account for the crossover deficit observed in its absence. Here, physical evidence that the nuclease activity of Exo1 is essential for normal 5’-3’ resection at the Spo11-dependent HIS4 hotspot in otherwise wild-type cells is presented. This same activity was also required for normal levels of gene conversion at the locus. Nevertheless, gene conversions were frequently observed at a distance beyond that at which resection was readily detectable arguing that it is not the extent of the initial DNA end resection that limits heteroduplex formation. In addition to these nuclease-dependent functions, nuclease-deficient exo1 mutants were found to be capable of maintaining crossing-over at wild-type levels in a number of genetic intervals, suggesting that Exo1 also plays a nuclease-independent role in crossover promotion. Furthermore, the results of both physical and genetic analyses imply that Sgs1 does not contribute significantly to resection during meiosis in exo1∆ cells, indicating that the mitotic and meiotic resection machinery differs. In light of these new insights, a model describing the formation of heteroduplex DNA and crossovers during meiosis is proposed.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Separable roles for exonuclease I in meiotic DNA double-strand break repair

    Full text link
    Exo1 is a member of the Rad2 protein family and possesses both 5' –3' exonuclease and 5 flap endonuclease activities. In addition to performing a variety of functions during mitotic growth, Exo1 is also important for the production of crossovers during meiosis. However, its precise molecular role has remained ambiguous and several models have been proposed to account for the crossover deficit observed in its absence. Here, we present physical evidence that the nuclease activity of Exo1 is essential for normal 5' –3' resection at the Spo11-dependent HIS4 hotspot in otherwise wild-type cells. This same activity was also required for normal levels of gene conversion at the locus. However, gene conversions were frequently observed at a distance beyond that at which resection was readily detectable arguing that it is not the extent of the initial DNA end resection that limits heteroduplex formation. In addition to these nuclease-dependent functions, we found that an exo1-D173A mutant defective in nuclease activity is able to maintain crossing-over at wild-type levels in a number of genetic intervals, suggesting that Exo1 also plays a nuclease-independent role in crossover promotion

    Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1

    No full text
    Repair of DNA double-strand breaks (DSBs) by homologous recombination requires resection of 5-termini to generate 3-single-strand DNA tails1. Key components of this reaction are exonuclease 1 and the bifunctional endo/exonuclease, Mre11 (refs 24). Mre11 endonuclease activity is critical when DSB termini are blocked by bound proteinsuch as by the DNA end-joining complex5, topoisomerases6 or the meiotic transesterase Spo11 (refs 713)but a specific function for the Mre11 35 exonuclease activity has remained elusive. Here we use Saccharomyces cerevisiae to reveal a role for the Mre11 exonuclease during the resection of Spo11-linked 5-DNA termini in vivo. We show that the residual resection observed in Exo1-mutant cells is dependent on Mre11, and that both exonuclease activities are required for efficient DSB repair. Previous work has indicated that resection traverses unidirectionally1. Using a combination of physical assays for 5-end processing, our results indicate an alternative mechanism involving bidirectional resection. First, Mre11 nicks the strand to be resected up to 300 nucleotides from the 5-terminus of the DSBmuch further away than previously assumed. Second, this nick enables resection in a bidirectional manner, using Exo1 in the 53 direction away from the DSB, and Mre11 in the 35 direction towards the DSB end. Mre11 exonuclease activity also confers resistance to DNA damage in cycling cells, suggesting that Mre11-catalysed resection may be a general feature of various DNA repair pathways
    corecore