235 research outputs found

    Localization of a 64-kDa phosphoprotein in the lumen between the outer and inner envelopes of pea chloroplasts

    Get PDF
    The identification and localization of a marker protein for the intermembrane space between the outer and inner chloroplast envelopes is described. This 64-kDa protein is very rapidly labeled by [γ-32P]ATP at very low (30 nM) ATP concentrations and the phosphoryl group exhibits a high turnover rate. It was possible to establish the presence of the 64-kDa protein in this plastid compartment by using different chloroplast envelope separation and isolation techniques. In addition comparison of labeling kinetics by intact and hypotonically lysed pea chloroplasts support the localization of the 64-kDa protein in the intermembrane space. The 64-kDa protein was present and could be labeled in mixed envelope membranes isolated from hypotonically lysed plastids. Mixed envelope membranes incorporated high amounts of 32P from [γ-32P]ATP into the 64-kDa protein, whereas separated outer and inner envelope membranes did not show significant phosphorylation of this protein. Water/Triton X-114 phase partitioning demonstrated that the 64-kDa protein is a hydrophilic polypeptide. These findings suggest that the 64-kDa protein is a soluble protein trapped in the space between the inner and outer envelope membranes. After sonication of mixed envelope membranes, the 64-kDa protein was no longer present in the membrane fraction, but could be found in the supernatant after a 110000 × g centrifugation

    4-Year COBE DMR Cosmic Microwave Background Observations: Maps and Basic Results

    Full text link
    The cosmic microwave background radiation provides unique constraints on cosmological models. In this Letter we present a summary of the spatial properties of the cosmic microwave background radiation based on the full 4 years of COBE DMR observations, as detailed in a set of companion Letters. The anisotropy is consistent with a scale-invariant power law model and Gaussian statistics. With full use of the multi-frequency 4-year DMR data, including our estimate of the effects of Galactic emission, we find a power-law spectral index of n=1.2±0.3n=1.2\pm 0.3 and a quadrupole normalization Qrms−PS=15.3−2.8+3.8Q_{rms-PS}=15.3^{+3.8}_{-2.8} ÎŒ\muK. For n=1n=1 the best-fit normalization is Qrms−PS∣n=1=18±1.6Q_{rms-PS}\vert_{n=1}=18\pm 1.6 ÎŒ\muK. These values are consistent with both our previous 1-year and 2-year results. The results include use of the ℓ=2\ell=2 quadrupole term; exclusion of this term gives consistent results, but with larger uncertainties. The 4-year sky maps, presented in this Letter, portray an accurate overall visual impression of the anisotropy since the signal-to-noise ratio is ~2 per 10 degree sky map patch. The improved signal-to-noise ratio of the 4-year maps also allows for improvements in Galactic modeling and limits on non-Gaussian statistics.Comment: 11 pages plus 2 PostScript figures. Figures 2 and 4 are not included, but are available upon request to [email protected]. Submitted to The Astrophysical Journal (Letters

    FOUR-YEAR COBE 1 DMR COSMIC MICROWAVE BACKGROUND OBSERVATIONS: MAPS AND BASIC RESULTS

    Get PDF
    ABSTRACT In this Letter we present a summary of the spatial properties of the cosmic microwave background radiation based on the full 4 yr of COBE Differential Microwave Radiometer (DMR) observations, with additional details in a set of companion Letters. The anisotropy is consistent with a scale-invariant power-law model and Gaussian statistics. With full use of the multifrequency 4 yr DMR data, including our estimate of the effects of Galactic emission, we find a power-law spectral index of n Ï­ 1.2 H 0.3 and a quadrupole normalization Q rmsÏȘPS Ï­ 15.3 ÏȘ2.8 Ï©3.8 K. For n Ï­ 1 the best-fit normalization is Q rmsÏȘPS͉n Ï­ 1 Ï­ 18 H 1.6 K. These values are consistent with both our previous 1 yr and 2 yr results. The results include use of the ᐉ Ï­ 2 quadrupole term; exclusion of this term gives consistent results, but with larger uncertainties. The final DMR 4 yr sky maps, presented in this Letter, portray an accurate overall visual impression of the anisotropy since the signal-to-noise ratio is 12 per 10Њ sky map patch. The improved signal-to-noise ratio of the 4 yr maps also allows for improvements in Galactic modeling and limits on non-Gaussian statistics

    Metabolomics demonstrates divergent responses of two Eucalyptus species to water stress

    Get PDF
    Past studies of water stress in Eucalyptus spp. generally highlighted the role of fewer than five “important” metabolites, whereas recent metabolomic studies on other genera have shown tens of compounds are affected. There are currently no metabolite profiling data for responses of stress-tolerant species to water stress. We used GC–MS metabolite profiling to examine the response of leaf metabolites to a long (2 month) and severe (ιpredawn < −2 MPa) water stress in two species of the perennial tree genus Eucalyptus (the mesic Eucalyptus pauciflora and the semi-arid Eucalyptus dumosa). Polar metabolites in leaves were analysed by GC–MS and inorganic ions by capillary electrophoresis. Pressure–volume curves and metabolite measurements showed that water stress led to more negative osmotic potential and increased total osmotically active solutes in leaves of both species. Water stress affected around 30–40% of measured metabolites in E. dumosa and 10–15% in E. pauciflora. There were many metabolites that were affected in E. dumosa but not E. pauciflora, and some that had opposite responses in the two species. For example, in E. dumosa there were increases in five acyclic sugar alcohols and four low-abundance carbohydrates that were unaffected by water stress in E. pauciflora. Re-watering increased osmotic potential and decreased total osmotically active solutes in E. pauciflora, whereas in E. dumosa re-watering led to further decreases in osmotic potential and increases in total osmotically active solutes. This experiment has added several extra dimensions to previous targeted analyses of water stress responses in Eucalyptus, and highlights that even species that are closely related (e.g. congeners) may respond differently to water stress and re-waterin

    The major chloroplast envelope polypeptide is the phosphate translocator and not the protein import receptor

    Get PDF
    DURING photosynthetic CO2 fixation, fixed carbon is exported from the chloroplasts in the form of triose phosphate by the chloroplast phosphate translocator, which is the principal polypeptide (E29) from spinach chloroplast envelopes1. We have sequenced this nuclear-coded envelope membrane protein from both spinach and pea chloroplasts2,3. An envelope membrane protein, E30, has been identified as a possible receptor for protein import into pea chloroplasts using an anti-idiotypic antibody approach4–6; antibodies raised against purified E30 inhibited binding and import of proteins into chloroplasts7. The amino-acid sequence of E30 deduced from its complementary DNA7 turned out to be highly homologous to that of E29, assigned by us as the spinach phosphate translocator2, and was identical to the corresponding polypeptide from pea chloroplasts3. Differences in the binding properties to hydroxylapatite of £30 and the phosphate translocator suggested that E30 was not responsible for the chloroplast phosphate-transport activity but was the chloroplast import receptor7. Here we present evidence that argues against this and which identifies E30 as the chloroplast phosphate translocator

    Dipole Anisotropy in the COBE DMR First-Year Sky Maps

    Full text link
    We present a determination of the cosmic microwave background dipole amplitude and direction from the COBE Differential Microwave Radiometers (DMR) first year of data. Data from the six DMR channels are consistent with a Doppler-shifted Planck function of dipole amplitude Delta T = 3.365 +/-0.027 mK toward direction (l,b) = (264.4 +/- 0.3 deg, 48.4 +/- 0.5 deg). The implied velocity of the Local Group with respect to the CMB rest frame is 627 +/- 22 km/s toward (l,b) = (276 +/- 3 deg, 30 +/- 3 deg). DMR has also mapped the dipole anisotropy resulting from the Earth's orbital motion about the Solar system barycenter, yielding a measurement of the monopole CMB temperature at 31.5, 53, and 90 GHz, to be 2.75 +/- 0.05 K.Comment: Post Script (4 figures) Ap J 419, 1-6 (1993

    Attachment of Salmonella strains to a plant cell wall model is modulated by surface characteristics and not by specific carbohydrate interactions

    Get PDF
    Background: Processing of fresh produce exposes cut surfaces of plant cell walls that then become vulnerable to human foodborne pathogen attachment and contamination, particularly by Salmonella enterica. Plant cell walls are mainly composed of the polysaccharides cellulose, pectin and hemicelluloses (predominantly xyloglucan). Our previous work used bacterial cellulose-based plant cell wall models to study the interaction between Salmonella and the various plant cell wall components. We demonstrated that Salmonella attachment was favoured in the presence of pectin while xyloglucan had no effect on its attachment. Xyloglucan significantly increased the attachment of Salmonella cells to the plant cell wall model only when it was in association with pectin. In this study, we investigate whether the plant cell wall polysaccharides mediate Salmonella attachment to the bacterial cellulose-based plant cell wall models through specific carbohydrate interactions or through the effects of carbohydrates on the physical characteristics of the attachment surface. Results: We found that none of the monosaccharides that make up the plant cell wall polysaccharides specifically inhibit Salmonella attachment to the bacterial cellulose-based plant cell wall models. Confocal laser scanning microscopy showed that Salmonella cells can penetrate and attach within the tightly arranged bacterial cellulose network. Analysis of images obtained from atomic force microscopy revealed that the bacterial cellulose-pectin-xyloglucan composite with 0.3 % (w/v) xyloglucan, previously shown to have the highest number of Salmonella cells attached to it, had significantly thicker cellulose fibrils compared to other composites. Scanning electron microscopy images also showed that the bacterial cellulose and bacterial cellulose-xyloglucan composites were more porous when compared to the other composites containing pectin. Conclusions: Our study found that the attachment of Salmonella cells to cut plant cell walls was not mediated by specific carbohydrate interactions. This suggests that the attachment of Salmonella strains to the plant cell wall models were more dependent on the structural characteristics of the attachment surface. Pectin reduces the porosity and space between cellulose fibrils, which then forms a matrix that is able to retain Salmonella cells within the bacterial cellulose network. When present with pectin, xyloglucan provides a greater surface for Salmonella cells to attach through the thickening of cellulose fibrils
    • 

    corecore