97 research outputs found
Recommended from our members
Distributed fiber optic sensors for monitoring reinforced concrete piles using Brillouin scattering
In this paper we report on advances made in the installation and use of distributed fiber optic sensors to monitor reinforced concrete piles subjected to static load tests. Eight concrete test piles, at three construction sites in London, have recently been instrumented with embedded DFOS. The Brillouin optical time domain reflectometry (BOTDR) technique was used to measure the changes in internal strain and temperature of the piles, during concrete curing and during load testing. These data were used to assess the quality of the pile and derive the load capacity parameters to be used in the foundation design of tall buildings which are to be erected on these sites. The measurements obtained from the DFOS system agreed well with the measurements taken simultaneously using conventional point sensors embedded in the piles. Whereas the conventional sensors only provided measurements at a small number of locations within the piles, the DFOS system made it possible to record the complete strain / temperature profiles along the length of the piles.The authors would like to acknowledge the contribution of (listed in alphabetical order): Hyungjoon Seo, Jason Shardelow, Peter Knott, Yi Rui and Zili Li from CSIC; Duncan Nicholson, Landi Proctor, Stuart Pennington and Vivien Kwan from Ove Arup & Partners Ltd.This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by SPIE
Dynamic response of a damaged masonry rail viaduct: Measurement and interpretation
Despite recent advances in modelling and testing techniques, assessing the serviceability of ageing masonry rail bridges remains a significant challenge. Most assessment methods are based on ultimate strength, while reliable measurement-based assessment criteria are lacking. This paper aims to improve the understanding of serviceability behaviour through detailed dynamic monitoring of the bridge locally (e.g. in locations of damage) and globally (e.g. interaction of different components). Quasi distributed sensing techniques (Fibre Bragg Grating cables and Digital Image Correlation) were used to quantify the bridge dynamic response through extensive measurement of strains and displacements. Specifically, these techniques were applied to two damaged spans of the Marsh Lane viaduct in Leeds, UK. A detailed investigation of the dynamic pier and arch barrel movements reveal how the response mechanisms relate to, and likely propagate, the existing damage. For instance, rotation of piers in the bridge longitudinal plane causes significant span opening and closing, which in turn causes the skewbacks and backing to rock on the piers. This is accompanied by flexural deformation of the arch, which forces the existing transverse cracks to experience high compressive strains. Similarly, the transverse rotation of piers due to the presence of the relieving arches causes spreading of the relieving arches and opening of the longitudinal crack above. These observations provide new insight into behaviour and lead to suggestions for improving assessment techniques for masonry viaducts
Recommended from our members
Monitoring the axial displacement of a high-rise building under construction using embedded distributed fibre optic sensors
The floor-to-floor axial shortening of vertical load-bearing elements is an important factor in the design and construction of high-rise buildings. Contractors need to allow for the expected final compression of columns and walls due to superimposed load, concrete creep and shrinkage, particularly when installing finishes and partitions in lower floors, while the building has not yet been completed. An added complication arises from the differential shortening between elements of different stiffness.
This axial shortening is predicted by designers using empirical models, in advance of construction. However, in practice, the shortening at every level cannot be measured continuously using traditional surveying measurement techniques during construction. Therefore, a monitoring system using distributed fibre optic sensors (DFOS) measuring strain and temperature, is being installed during the construction of Principal Tower, a 50-storey reinforced concrete building in London. DFOS sensors are being embedded inside two columns and two walls as the construction progresses. Using the strain and temperature data acquired from this system, the axial deformation relative to the ground level can be calculated along the whole height of the completed elements, at any time during the construction. Thus, the engineers and contractors are able to verify their predictions and adjust their assumptions if necessary.
A selection of the data acquired during the construction of the first 17 levels of the building is presented. These data have shown that the amount of shortening experienced by a member is influenced by the member’s stiffness and size. The monitoring data have also revealed that thermal movement has a significant effect on the overall axial displacement of the building
Influence of compost amendments on the hydraulic functioning of brownfield soils
This study assessed the impact of compost on the hydraulic properties of three soils (sandy loam, clay loam and diesel-contaminated sandy loam) with relatively poor physical quality typical of brownfield sites. Soils were amended with two composts at 750 t/ha. Samples were also collected from a clay-capped brownfield site, previously amended with 250, 500 or 750 t/ha of compost. Water-release characteristics and saturated hydraulic conductivity were determined for all soils and physical quality indicators derived. Unsaturated flow in field profiles after compost application with two depths of incorporation and two indigenous subsoils was simulated using Hydrus-1D. Compost generally increased water retention. Hydraulic conductivity tended to decrease following compost application in sandy loam but increased in clay and clay loam, where compost addition resulted in a larger dominant pore size. Although compost improved physical quality indicators, they remained suboptimum in clay and clay loam soil, which exhibited poor aeration, and in the contaminated sandy loam, where available water capacity was limited, possibly due to changes in wettability. Increasing application rates in the field enhanced water retention at low potentials and hydraulic conductivity near saturation but did not alter physical quality indicators. Numerical simulation indicated that the 500 t/ha application resulted in the best soil moisture regime. Increasing the depth of incorporation in the clay cap improved drainage and reduced waterlogging, but incorporation in more permeable subsoil resulted in prolonged dry conditions to greater depths
Recommended from our members
Distributed fibre optic sensors for measuring strain and temperature of cast-in-situ concrete test piles
In this paper we present the use of distributed fibre optic sensor (DFOS) technology to measure the temperature and strain of reinforced concrete test piles during construction and during static load tests. Eight test piles were recently instrumented with DFOS, on three construction sites in London, by the Cambridge Centre for Smart Infrastructure and Construction (CSIC), in collaboration with Ove Arup & Partners Ltd. The concrete curing temperature profiles of the piles were used to detect the presence of significant defects in the piles. The load test strain profiles along the length of the piles were used to determine the load capacity of the piles and estimate the design parameters of the various soil strata, as well as the internal relative displacement of the piles under various loads. Being distributed in nature, DFOS give a much more detailed picture of the performance of a test pile, as compared to traditional embedded point sensors, such as vibrating wire strain gauges and extensometers. This is demonstrated with a sample of data obtained from one of the instrumented test piles.This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by ICE Publishing
Recommended from our members
Monitoring the axial shortening of principal tower using embedded distributed fibre optic sensors
Distributed fiber optic sensing of axially loaded bored piles
Instrumented pile tests are vital to establish the performance of a pile and validate the assumptions made during initial design. Conventional instrumentation includes vibrating wire strain gauges and extensometers to measure the change in strain or displacements within a pile. Although these strain and displacement gauges are very accurate, they only provide strain/displacement readings at discrete locations at which they are installed. It is therefore common to interpolate between two consecutive points to obtain values corresponding to the data gaps between points; in practice, these discrete instrumented points could be tens of meters apart, at depths corresponding to different soil layers, and hence simple interpolation between the measurement points remains questionable. The Brillouin optical time-domain reflectometry fiber optic strain sensing system is able to provide distributed strain sensing along the entire length of the cable, enabling the full strain profile to be measured during a maintained pile load test. The strain data can also be integrated to obtain the displacement profile. This paper presents three case studies which investigate the performance of three concrete bored piles in London using both conventional vibrating wire strain gauges and distributed fiber optic strain sensing during maintained pile load tests, which enable comparisons made between the two instrumentation systems. In addition, finite-element analyses show that the ability to measure the full strain profiles for each pile is highly advantageous in understanding the performance of the pile and in detecting any abnormalities in the pile behavior.This research was conducted within the Centre for Smart Infrastructure and Construction (CSIC) of the University of Cambridge, funded by EPSRC and Innovate U.K
Management control – International Observatory 2014
International audienc
Phytoremediation of light non-aqueous phase liquids
Non-aqueous phase liquids (NAPLs) are persistent sources of contamination in the ground, providing a long-term supply of dissolved phase contamination and taking significant periods to dissipate naturally. Light NAPLs (LNAPLs) take the form of a separate phase within the ground, often as individual ganglia in pore spaces within the capillary zone such that the contaminated region is diffuse and comprised of many unconnected small contaminant sources. Consequently, remedial action is challenging and success may be limited to ex-situ remediation techniques. The ability of plants to phytoremediate dissolved-phase contamination is well known, but the impact of LNAPLs on plant growth and subsequent contaminant behaviour is largely unknown. Experimental work with ryegrass (Lolium perenne) is presented, exploring the impact of the physical presence of an LNAPL (mineral oil) on plant growth, root distribution and oil removal. The presence of the oil was found to significantly impact root biomass and distribution, leading to zones of increased root growth alongside decreased shoot growth. Significant removal of the LNAPL was noted in both hydroponic conditions and planted soil
- …