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Abstract 22 

Instrumented pile tests are vital to establish the performance of a pile and validate the 23 

assumptions made during initial design. Conventional instrumentation includes vibrating wire 24 

strain gauges and extensometers to measure the change in strain or displacements within a 25 

pile. While these strain and displacement gauges are very accurate, they only provide 26 

strain/displacement readings at discrete locations at which they are installed.  It is therefore 27 

common to interpolate between two consecutive points to obtain the values corresponding to 28 

the data gaps in between; in practice, these discrete instrumented points could be tens of 29 
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meters apart, at depths corresponding to different soil layers, and hence simple interpolation 30 

between the measurement points remains questionable. The Brillouin Optical Time Domain 31 

Reflectometry fibre optic strain sensing system however is able to provide distributed strain 32 

sensing along the entire length of the cable, enabling the full strain profile to be measured 33 

during a maintained pile load test. The strain data can also be integrated to obtain the 34 

displacement profile. In this paper, three case studies are presented where the performance 35 

of three concrete bored piles in London is investigated using both conventional vibrating wire 36 

strain gauges and distributed fibre optic strain sensing during maintained pile load tests 37 

which enabled comparisons to be made between the two instrumentation systems. In 38 

addition, finite element analyses were conducted for the three piles and it was found that the 39 

ability to measure the full strain profiles for each pile is highly advantageous in 40 

understanding the performance of the pile and in detecting any abnormalities in the pile 41 

behaviour. 42 

Keywords: piles, field monitoring, fibre optic sensors, load transfer, pile load test, finite element analysis, pile instrumentation 43 

1. Introduction  44 

The overall geotechnical capacity of a pile is derived from the skin friction and the base 45 

resistance. The design process begins with evaluating moderately conservative soil 46 

parameters based on site investigation test results. Depending on the type of soil, different 47 

equations and methods for pile capacity can be used. For example, for piles in clay the α-48 

method and the method proposed by Meyerhof (1965) are commonly used (e.g. in the UK) 49 

to predict the ultimate skin friction and end bearing resistance respectively. Other methods 50 

adopt direct correlations based on in situ soil investigation (e.g. CPT, SPT) (Eslami & 51 

Fellenius 1997), LCPC (Bustamante & Gianeselli 1982), IC method (Jardine & Chow 1996). 52 

More complex and rigorous numerical methods can also be employed for complicated pile 53 

problems such as piled groups (Kraft, Ray & Kakaaki 1981; Poulos 1989; Randolph 2003) 54 

and piled raft (Poulos & Davis 1974; Kitiyodom & Matsumoto 2003) foundations. 55 

Nevertheless, all of these methods are used in the design stage and therefore they only 56 



3 
 

provide an estimate of a pile’s behaviour. As such, instrumented pile tests are recommended 57 

by standard codes of practice (e.g. clause 7.5 of Eurocode 7) to quantify the performance of 58 

a pile in order to validate the initial design assumptions.  59 

General preliminary pile tests (McCabe & Lehane 2006) include a number of vibrating wire 60 

strain gauges (VWSG), either in pairs or threes at several levels within the pile, along with a 61 

measurement of pile head settlement measured from an independent reference beam by 62 

linear voltage distance transducers (LVDT).  This instrumentation scheme offers very useful 63 

but discrete data points (Lehane et al. 1993). Data from appropriately monitored pile load 64 

tests can provide a means to assess the behaviour of the pile and develop pile behaviour 65 

models (Comodromos & Bareka 2009) such as load transfer curves (Ménard 1963; 66 

Butterfield & Banergee 1971; Kraft, Ray & Kakaaki 1981; Frank & Zhao 1982; Poulos 1989; 67 

Lee 1993; Klar et al. 2006; Abchir et al. 2015; Seo et al. 2017). 68 

Recent advances in geotechnical instrumentation include fibre optic (FO) technology such as 69 

Fibre Bragg Gratings (FBG) (Kersey & Morey 1993; Lee et al. 2004; Liu & Zhang 2012; 70 

Doherty et al. 2015) and distributed Brillouin Optical Time-Domain Reflectometry (BOTDR) 71 

(Kurashima et al. 1993; Soga 2014; Pelecanos et al. 2017). The latter technology offers near 72 

spatially-continuous strain data along the entire length of the pile, which can be further 73 

processed to provide detailed information regarding the pile behaviour and integrity and 74 

load-transfer properties (Pelecanos & Soga 2017; de Battista et al. 2016). The BOTDR 75 

technique has been successfully used to monitor various soil-structure interaction problems 76 

(Acikgoz et al. 2016; Acikgoz et al. 2017), including piles (Klar et al. 2006; Ouyang et al. 77 

2015; Pelecanos et al. 2016), shafts/retaining walls (Mohamad et al. 2011; Schwamb et al. 78 

2014; Schwamb & Soga 2015), tunnel linings (Mohamad et al. 2010; Mohamad et al. 2012; 79 

Cheung et al. 2010; de Battista et al. 2015; Di Murro et al. 2016; Soga et al. 2017), tunnelling 80 

and other geotechnical process-induced surface settlements (Hauswirth et al. 2014; Klar, 81 

Dromy & Linker 2014; Linker & Klar 2015), concrete cracking (Goldfeld & Klar 2013), soil 82 

slopes etc. 83 
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In this paper the BOTDR distributed monitoring technology is briefly discussed and its 84 

application in a number of pile load test cases (both top-loaded using an external reference 85 

frame and bi-directionally loaded using an Osterberg-cell) in London is explored. The 86 

monitoring data from the distributed BOTDR and discrete VWSG technologies in the three 87 

case studies is analysed and compared to shed light on the relative merits of each approach 88 

(continuous and discrete) and highlight their necessity in future reliable pile load testing. 89 

Finally, numerical analyses were conducted for each of the three piles and the results are 90 

presented in this paper to enable a better understanding of pile behaviour under loading. 91 

2. Distributed fibre optic monitoring  92 

This section provides a brief description of the principles of BOTDR. However, the complete 93 

description of the method and the associated experimental approaches required for 94 

calibration are well beyond the scope of this paper and they are therefore not included, as 95 

they can be found elsewhere in great detail (Mohamad 2007; Iten 2011; Soga 2014; Soga et 96 

al. 2015). More information about the fundamentals of light propagation can be obtained 97 

from relevant literature in the area of photonics (Horiguchi et al. 1995) as this is out of scope 98 

of this paper. A detailed description of the theory of distributed FO strain sensing and its 99 

applications in civil and geotechnical infrastructure is given by Kechavarzi et al. (2016) 100 

2.1. Principle of Brillouin Optical Time Domain Reflectometry 101 

A fibre optic (FO) cable allows light waves from a FO analyser to travel along its entire length 102 

through total internal reflection, irrespective of the orientation of the cable itself. This allows a 103 

signal to be carried over very long distances, such as for broadband Internet. Backscattered 104 

signals are generated as the light wave passes through the optical fibre and presents itself 105 

as Rayleigh, Raman and Brillouin spectrum. Within the Brillouin backscatter, it is found that 106 

the peak frequency experiences a shift that is generally considered to be linearly 107 

proportional to applied strain. Using the measured time required for the backscattered signal 108 

to return to the analyser, the specific location at which this frequency shift is observed can 109 
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be estimated accurately. Therefore, the entire fibre optic cable is essentially serving as a 110 

distributed strain sensor.  111 

The FO analyser sends a light with of 1550 nm wavelength into an optical fibre and the 112 

generated Brillouin spectrum of the back-scattered light has 25-27 MHz bandwidth and 113 

around 11 GHz central peak frequency when no strain is applied on the fibre. The back-114 

scattered Brillouin central frequency, vb, is related to the input light according to Eq.  1 and 115 

this is provided directly from the FO analyser. 116 

 117 

Eq.  1 118 

where nf is the fibre core refractive index, vα is the acoustic velocity in the fibre and λl is the 119 

wave length of the input light.  120 

Changes in temperature and/or strain induce a density change in the cable and therefore 121 

change in the acoustic velocity, vα, of the light too. As the strain or temperature at a given 122 

location change, the frequency of the backscattered light is shifted by an amount which is 123 

approximately linearly proportional to the applied strain, Δε, or temperature, ΔT, according to 124 

Eq.  2. 125 

 126 

Eq.  2 127 

Where, vb0 is the central Brillouin peak frequency at zero strain and at a given temperature, 128 

Δε is the applied strain, ΔΤ is the temperature change, and Μ, Ν are the coefficients for 129 

strain and temperature change respectively. For an incident wavelength of 1550nm, the 130 

Brillouin frequency shift can vary from 9GHz to 13GHz depending on the different fibre 131 

properties. Therefore knowledge about of this frequency difference can provide information 132 

about the applied strain and temperature changes at the location where the back-scattered 133 

light was generated. As the speed of light is constant, the location can be evaluated by 134 
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measuring the time since the light was initially sent into the fibre. Back-scattered light is 135 

generated at every point along the entire length of the fibre and therefore by resolving both 136 

time and frequency a continuous strain profile along the fibre can be determined. 137 

For the case studies presented in this paper, either the AQ8603 analyser manufactured by 138 

Yokogawa Electric Corporation, Japan, or the NeubreScope NBX-5000 analyser 139 

manufactured by Neubrex, Japan, are employed. These are able to provide a minimum 140 

readout resolution between 0.05m and 0.1m with a spatial resolution of 0.5 to 1.0m. Spatial 141 

resolution implies that it produces a weighted average strain reading over 0.5 or 1m at every 142 

0.05m length of the cable (this is considered as “spatially-continuous” or “distributed” data). 143 

These settings can be changed depending on the time allocated for the specific test. 144 

Essentially the technology offers a large number of strain data (every 0.05m to 0.1m in this 145 

case) along a structure embedded with fibre optic cables. 146 

In addition to the clear advantage of measuring a full strain profile, its simplicity lies in the 147 

fact that only a single cable is required for the entire system, enabling its use in small 148 

diameter piles and eliminating the time and effort for cable management, that would be 149 

required for conventional strain gauges. No electricity is required other than to power the 150 

analyser itself, which could be located much further away in a safe, and convenient location 151 

on the construction site, as light waves travel efficiently through the fibre optic cables. The 152 

result is an instrumentation system which can provide a full strain profile of the pile. 153 

2.2. Fibre Optic Cables 154 

Strain on an optical fibre can be generated from two sources, mechanical or thermal. 155 

Therefore, two types of optical fibre cables are installed and are shown in Figure 2: Fujikura 156 

4-core single mode fibres reinforced ribbon cable for strain sensing (strain sensing cable) 157 

and Excel 4-core single mode fibres loose tube for temperature compensation (temperature 158 

cable). While they are both attached to the reinforcement cage, the fibre optic cores of the 159 

temperature cable sit in a gel which isolates any transfer of mechanical strains from the 160 



7 
 

outer coating. Thus it is only subjected to thermal changes. These measurements are used 161 

to compensate the readings measured from the strain cables to provide an accurate reading 162 

of interest, the actual mechanical strain. 163 

2.3. Installation of FO Instrumentation 164 

Installation of FO cables is usually done on site, as described in Figure 3. Long pile 165 

foundations typically consist of a number of steel reinforcement cage segments and 166 

therefore the bottom steel cage is instrumented on the ground. The FO cables (shown in 167 

blue colour in Figure 3) are running along the entire length of the bottom segment on two 168 

opposite sides of the pile and a loop of some FO cable is made close to the bottom of the 169 

segment. The longitudinal cables are pre-strained (i.e. a tensile strain is applied) using cable 170 

clamps at the two ends of the steel cage. Once the borehole is dug, the bottom cage is 171 

inserted and while the other cages are spliced onto the bottom cage and the whole pile 172 

lowered down in the borehole, the remaining FO cable is attached to them. Finally, the two 173 

ends of the FO cable run from the top of the pile to the FO analyser. 174 

With the pile loaded axially, it is assumed that the concrete pile will have negligible hoop 175 

strain across its cross section and therefore a 10m loop cable for both strain and 176 

temperature is prepared and secured at the end of the bottom reinforcement cage to serve 177 

as a zero-strain loop for referencing and compensation purposes.  178 

For the ease of data interpretation, a pre-strain of about 1000-2000με is often introduced to 179 

the strain cable. Anchorage is provided on the bottom loop end by cable wire clamps before 180 

stretching the strain cable to the predetermined pre-strain. Strain cable is then secured with 181 

another set of cable wire clamps at the top of the reinforcement cage before supplementing 182 

the anchorage by either spot gluing with epoxy glue or using cable ties at approximately 183 

every 0.5-1.0m interval. Temperature cables are loosely secured next to the strain cables 184 

with cable ties as they are routed to the top of the cage. Figure 4 (a) and (b) show the 185 

installed FO cables and sister-bar VWSGs on a foundation pile.  186 
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Once the bottom cage has been instrumented, it is lowered into the borehole. The fibre optic 187 

cables are then unwound from the reels on each side of the borehole as the cage is lowered. 188 

Pre-straining is carried out for the strain cables for subsequent reinforcement cages as well 189 

without epoxy glue due to time constraints. Concrete is subsequently poured in the borehole 190 

and as the concrete cures the FO cables become securely embedded within the pile. Further 191 

details of FO cable installation in piles established at University of Cambridge can be found 192 

in (Klar et al. 2006; Soga 2014; Soga et al. 2015).  193 

2.4. FO data analysis 194 

As described earlier, applied strain causes a shift in the peak Brillouin frequency in the 195 

optical fibre. Therefore, by measuring the frequency difference, one can obtain the applied 196 

strain on the cable. Moreover, because FO cables are able to detect strains due to both 197 

mechanical and thermal loads, the two components need to be analysed separately. The 198 

measured frequency difference from the “temperature cable”, ΔvbT, is influenced only by 199 

changes in temperature, whereas that from the “strain cable”, ΔvbS, is influenced by changes 200 

in both mechanical load and temperature.  201 

Therefore, changes in temperature, ΔT, can be obtained from Eq.  3 (where, CTT is a 202 

property of the cable, obtained by calibrating the “temperature cable”, which determines how 203 

temperature affects the Brillouin frequency reading of the cable and it is usually around 204 

1.1∙10-3 GHz/oC). 205 

 206 

Eq.  3 207 

The thermal strain, εtemp, (the strain that corresponds to free thermal expansion strain due to 208 

temperature change) is then given by Eq.  4 (where, αc is the thermal expansion coefficient 209 

of concrete and it is usually around 9.65 με/oC). 210 

 211 
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Eq.  4 212 

The real (observed) strain, εreal, (the actual strain that the pile experiences in the field) is then 213 

given by Eq.  5 (where, CE is a property of the fibre, obtained by calibrating the “strain cable”, 214 

which determines how strain affects the Brillouin frequency and it is usually around 5∙10-4 215 

GHz/με; and CT is a property of the fibre that determines how the Brillouin frequency is 216 

affected by temperature difference, and it is usually around 1.0∙10-3 GHz/oC). 217 

 218 

Eq.  5 219 

The mechanical (constrained) strain, εmech, (the reaction strain that is the result of both the 220 

applied mechanical load and temperature) is then given by Eq.  6 221 

 222 

Eq.  6 223 

Finally, once the strain profiles are obtained, the actual geotechnical response of the pile 224 

may be captured using Eq.  7 and Eq.  8 to determine axial force, Fa(y), and vertical 225 

displacement, u(y), profiles respectively. 226 

 227 

Eq.  7 228 

 229 

Eq.  8 230 

Where, EA is the axial rigidity of the pile (E is Young’s modulus and A is cross-sectional 231 

area) and y is the depth from the top of the pile. For the vertical displacements, the relative 232 

displacements obtained from the integration of axial strains is added to available absolute 233 

displacement values from displacement transducers at y0. The data profiles obtained from 234 

BOTDR have usually a wavy nature and therefore they need to be filtered prior to data 235 
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analysis. The data presented in this study have been filtered using a second order Savitzky-236 

Golay (1964) filter with a 31-point frame. 237 

3. Case study 1: Pile load test at Broadgate Road, London. 238 

3.1. Description of pile test 239 

The Broadgate Road project in London was designed to house a fourteen-storey office 240 

building with two basement levels. Due to tight space restrictions along one side of the 241 

project, a number of mini piles of 0.305m diameter were constructed in close proximity to 242 

support the superstructure. A high-strength steel reinforcing case was inserted in the ground 243 

after the drilling process. The pile tested is 0.305m diameter (0.343m at the top 6m because 244 

of a steel casing around the pile) and 25m long, as shown in Figure 5 (a). On the same 245 

figure, the soil stratigraphy is also included with some known material properties obtained 246 

from relevant triaxial and simple shear laboratory tests. The pile test was carried out once 247 

the concrete material achieved a specified value of minimum strength. The pile test consists 248 

of three consecutive cycles of applied load (at the top of the pile) of up to 720kN, 1080kN 249 

and 1985kN for each of the three cycles, achieved after several loading and unloading steps 250 

(Figure 5 (b)). The pile was instrumented with distributed FO cables on two opposite sides of 251 

the pile and a number of discrete VWSGs along the pile depth. 252 

3.2. Data Interpretation 253 

Figure 6(a) shows the axial strain in the pile for the three peak values of the three cycles as 254 

it was captured by the FO cables and the VWSGs, whereas Figure 6(b) shows the 255 

corresponding axial force profiles (calculated from strains multiplied by the pile axial rigidity, 256 

EA, as described by Eq.  7 and using E=30000MPa. This value adopted for E was obtained 257 

following the Fellenius (1989) approach and by using the FO strain values, ε, at the top 258 

30cm of the pile (surrounded by soil but with insignificant influence, see Figure 6a, Figure 259 

9a, Figure 12a) and the applied loads, P, (E=ΔP/Δε/Α). The Fellenius method proposes a 260 

smooth linear (best-fit) reduction of secant modulus with axial strains. Therefore, a 261 
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representative average value of E over the dominant experienced strains (~300-700με) was 262 

adopted based on that best-fit line. It is shown that there is a generally good agreement 263 

between the two monitoring technologies. No VWSG data were obtained for the largest cycle 264 

(i.e. for loading of 1985kN), as there was a malfunction of the VWSG instruments, and 265 

therefore only FO data is available for this load case. It is also shown that there is some 266 

scatter in the FO data values which is currently a known issue with distributed FO strain 267 

sensing systems. This is because the standard resolution of FO is constant and about 30-268 

50με and therefore this becomes relatively less significant for larger applied loads (which 269 

imply larger induced strains). The waviness of FO strains may offer a challenge when 270 

differentiating strain data profiles to obtain shaft friction values, but their spatial continuity 271 

allows for a distributed sensing of localised strains, e.g. necking, fracture etc., whereas, such 272 

localised features would not be identified by discrete monitoring systems (such as VWSGs). 273 

Figure 6(c) shows the vertical displacements, u, of the pile from the FO cables. The values 274 

from the FOs were obtained by integrating the strain profiles and adding those to absolute 275 

displacement measurements from displacement transducers at the top of the pile, as 276 

described by Eq.  8.  277 

The results of a simplified numerical finite element (FE) beam-spring model are included for 278 

comparison in Figure 6. The simplified FE analysis considered a single vertical pile loaded 279 

axially from the top modelled with linear beam elements and represented the surrounding 280 

soil with non-linear springs which is a practical approach as opposed to the more common 281 

way of modelling the soil with solid elements. All the beam elements and non-linear springs 282 

contribute to the global stiffness matrix and therefore the global FE equilibrium equations. 283 

Due to the nonlinear nature of the soil-spring the external load is applied incrementally and 284 

the equations are solved using an iterative Modified Newton-Raphson technique. A number 285 

of different soil layers, associated with constant soil spring properties along the depth of 286 

each layer, were considered based on the ground conditions, although they did not follow 287 

exactly the soil stratigraphy. This simplified FE analysis approach is explained in the 288 
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Appendix in more detail. The behaviour of the pile was back-analysed to derive the 289 

properties of the soil springs which are subsequently used in the FE analysis to calculate the 290 

axial strain and vertical displacement profiles. Namely, the optimum set of properties of the 291 

soil springs was obtained that was able to reproduce well the observed axial strain and 292 

vertical displacement profiles from the FO readings. The values of the model parameters 293 

was obtained through a simple optimisation algorithm (here the Levenberg-Marquardt 294 

scheme was used (Levenberg 1944; Marduardt 1963)), in which the changing variables were 295 

the set of the model parameters (i.e. in this case 20 parameters, 4 for each of the 4 layers 296 

and 1 for the pile base) and the objective function was the difference of the axial strains 297 

obtained from the numerical model and those observed from the FOs. It is shown here that a 298 

good match is obtained between the field data (from FO & VWSGs) and the FE back-299 

calculations. 300 

Figure 7 (a) shows the calculated shaft friction (SF) profiles for the three peak values of the 301 

three cycles, from the FE analysis. Since the FO data exhibit some (inherent) undulations, 302 

deriving SF values from the slope of the axial force might be cumbersome. Therefore, here a 303 

“synthetic” approach is followed, where a numerical model is established that reproduces 304 

accurately the monitored axial strain and vertical displacements from FOs (see Figure 6) and 305 

then SF profiles are obtained from the FE analysis of the model. This numerical analysis 306 

approach was followed here due to the inability to obtain SF values directly from the wavy 307 

FO strains. In fact, direct estimation of SF requires differentiation of axial strains which in the 308 

case of wavy strain profiles leads to unrealistically large fluctuations of SF values with the 309 

depth of the pile.  It is shown here that generally larger SF values are obtained within the 310 

London Clay stratum (i.e. at z<-4m) as compared to the SF observed at the top soil layers 311 

(i.e. at z>-4m). However, it is shown that at the bottom of the pile, very small SF values are 312 

mobilised, perhaps due to the small strains experienced by the pile. Since a numerical 313 

optimisation procedure was followed to obtain the SF, the small values of strains 314 

experienced at the bottom of the pile compared to the usual variation of FO strain data leads 315 
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to a large noise-to-signal-ratio and therefore the evaluation of SF (i.e. determination of the 316 

actual slope of the strain profiles) values may become cumbersome. 317 

Furthermore, Figure 7 (b)(c) show the evolution of SF with the applied load, P, and the ‘local’ 318 

vertical displacement, u, at various depths (according to the local soil stratigraphy) along the 319 

pile and the pile base pressure, qb. Figure 7 shows that SF is mobilised early in the test, 320 

whereas the pile base pressure is mobilised at later stages for higher loads. As expected the 321 

SF development curves show an initial stiffness that drops with the displacement, due to the 322 

plasticity of the soil close to the pile shaft. It is clearly observed that the first layer (0-6m), 323 

which is covered by the pile casing does not show significant development of strains and 324 

approximately reaches an ultimate value of SF of about 20kPa. Besides, although the three 325 

layers considered within the London Clay show variable SF development, it is accepted that 326 

the majority of the London Clay reaches SF of about 70-100kPa, whereas the bottom of the 327 

London Clay shows minimal development of SF. However, this could probably be due to the 328 

small layer thickness considered in the data analysis (FO data exist in layer 4 between y=19-329 

22.5m). Nevertheless, in general, the evolution of shaft friction with the vertical 330 

displacements seems to reach (roughly) a plateau for displacements of about 0.01-0.03m 331 

which is slightly less than 10% of the pile diameter. 332 

Finally, Figure 7 (d) shows the relevant design t-z and q-z curves following the API (2002) 333 

methodology (see Appendix B). Although there are some differences between the observed 334 

(Figure 7 (c)) and design (Figure 7 (d)) curves, in general they seem to agree quite well 335 

yielding comparable values of ultimate pile shaft and base resistance. 336 

3.3. Remarks 337 

A typical interpretation of the geotechnical data would consider Eq.  9 and Eq.  10 to 338 

calculate the ultimate shaft capacity, qs, and Eq.  11 and Eq. 12 for the base capacity, qb of 339 

the pile (Salgado 2008; Knappett & Craig 2012; Tomlinson & Woodward 2014). 340 

 341 
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Eq.  9 342 

 343 

Eq.  10 344 

 345 

Eq.  11 346 

 347 

Eq.  12 348 

where, α (usually around 0.5 for London Clay (Tomlinson 1997)) is the empirical shaft 349 

coefficient, Ko is the earth pressure at rest, δ (usually around 0.75φ) (Stas & Kulhawy 1984) 350 

is the pile-soil interface friction angle and Nq (usually around 50 (Berezantzev, Khristoforov & 351 

Golubkov 1961; Knappett & Craig 2012)) and Nc (usually its value is taken as 9 (Kulhawy & 352 

Prakoso 1999)) are the base bearing capacity coefficients. 353 

Using the above equations and the geotechnical data in Figure 5 one would obtain an 354 

ultimate value of shaft capacity of 8kPa for the first layer (using Eq.  10) and about 32-355 

120kPa for the second layer (using Eq.  9). These values compare well with the calculated 356 

values from FO in Figure 7, which suggest around 20kPa for the first layer and about 10-357 

120kPa for the second layer. If one was to back calculate the values of α and β, then, the 358 

first layer would yield a value of β=0.5 (whereas Eq.  10 yields β=0.2) and layers 2-4 would 359 

yield values of α=0.9, 0.89, 0.1 respectively (whereas the common assumption is 0.5 360 

(Tomlinson 1997)). 361 

Similarly, when calculating the ultimate base capacity, one would obtain about 2MPa when 362 

using Eq.  11 (i.e. based on Su) and about 25MPa when using Eq. 12 (i.e. based on c and 363 

φ). These values are different and below and well above the (linear) 6MPa that was 364 

observed from the FOs during this test respectively. This is unexpected and it could be due 365 

to a number of possible reasons, e.g. it may suggest that the relation usually used for the 366 

pile base bearing capacity (Eq.  11) might be significantly unconservative or it may suggest 367 
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that the material parameter values used to calculate σ’v0 were too small. Nevertheless, it is 368 

observed here that Eq.  11 (i.e. Su) provides a better estimate. 369 

The ability to fit a numerical model to the monitoring data (in particular, the continuous 370 

vertical displacement profile) to further understand the behaviour of piles is a great 371 

advantage. More confidence in the results of the back-analysed model is built when a 372 

continuous strain profile is available which can show the full picture of the strains over the 373 

whole length of the pile and by direct integration it may give reliable estimates of pile 374 

displacements. Finally, the benefits of obtaining such a relevant numerical model can include 375 

the development of load transfer curves derived from the calculated shaft friction with 376 

respect to the vertical displacement. 377 

4. Case study 2: Pile load test at East Village, London. 378 

4.1. Description of pile test 379 

The second case study considers a pile test at East Village (former Athletes Village) in 380 

Stratford, London. The examined pile is 32m long with 900mm diameter (930mm at the top 381 

14m). The local soil stratigraphy consists of Made Ground, Alluvium and River Terrace 382 

Deposit finishing at around 14m depth and along which the pile is covered by a 15mm-thick 383 

steel casing. These layers are followed by two thick layers of Lambeth Group and Thanet 384 

Sand that interface at a depth of 23m. Information about pile geometry, soil stratigraphy and 385 

some basic soil properties are given in Figure 8(a). The pile test consists of a static 386 

maintained load applied at the top of the pile following two cycles of loading-unloading until 387 

the pile fails. Details about the pile test sequence are shown in Figure 8(b). Similar to the 388 

previous case, the pile was instrumented with distributed FO cables and discrete VWSGs; 389 

the latter were installed at various locations along the pile depth. 390 

4.2. Data Interpretation 391 

Figure 9 (a)(b) show the monitored axial strains and the calculated axial force in the pile for 392 

three selected load stages from both the FOs and the VWSGs. Similar to the previous case, 393 
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although the FOs show some scatter in the data, a good agreement is obtained between the 394 

two sensors for both strains and forces. Observed strains and forces are roughly constant for 395 

the first 14m which suggests that minor shaft friction is developed over that depth. This was 396 

expected as the pile is surrounded by a steel casing at the top 14m. Moreover, at depths 397 

below 14m, the axial strains and forces drop, which is due to the interaction with the 398 

surrounding soil and the developed soil-pile interface friction. Additionally, on the same 399 

graphs, the results of a simple FE analysis (similar to the one used in the first case, see 400 

Appendix A for more details and model parameters) are included (the strain step in the first 401 

figure is due to the change of pile diameter and hence the axial stiffness EA). This analysis 402 

was conducted to match the observed axial strains and vertical displacements in Figure 9 (a) 403 

and (c). The latter figure shows that the vertical displacements obtained by the direct 404 

integration of the observed axial strains match the displacements resulting from the FE 405 

model that reproduces the axial strains.  406 

Figure 10 (a) shows the calculated shaft friction, SF, profiles for the three selected load 407 

cases as these were determined from the FE analysis. Again, these were obtained from the 408 

FE model that was calibrated to reproduce accurately the monitored axial strain and vertical 409 

displacements from FOs (see Figure 9). Furthermore, Figure 10(b)(c) show the evolution of 410 

SF with the applied load, P, and the ‘local’ vertical displacement, u, at three selected depths 411 

along the pile, according to the local soil stratigraphy, i.e. in the shallow layers (covered with 412 

pile casing), Lambeth Group and Thanet Sand. It is firstly observed that the first layer, which 413 

is covered by the pile casing does not show significant development of strains and 414 

approximately reaches an ultimate value of SF of about 40kPa. In contrast, Lambeth Group 415 

and Thanet Sand do exhibit a larger development of SF that reaches around 200kPa and 416 

110kPa respectively. This difference was expected as the pile in the latter two layers was not 417 

covered with a steel casing and therefore pile-soil interaction friction develops resisting the 418 

pile movement. In general, as expected, the SF development curves show an initial stiffness 419 

that drops with the displacement, due to the plastic deformation of the soil close to the pile 420 
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shaft. Finally, it is again shown that SF is mobilised early in the test, whereas the pile base 421 

pressure in mobilised at later stages for higher loads.  422 

Finally, Figure 10 (d) shows the relevant design t-z and q-z curves following the API (2002) 423 

methodology. Although there are some differences between the observed (Figure 10 (c)) 424 

and design (Figure 10 (d)) curves, in general they seem to agree quite well yielding 425 

comparable values of ultimate pile shaft resistance. 426 

 427 

4.3. Remarks 428 

Using Eq.  9 – Eq. 12 and the geotechnical data in Figure 8 one would obtain an ultimate 429 

value of shaft capacity of 29kPa for the first layer (using Eq.  10), 32-219kPa for the second 430 

layer (using Eq.  9) and about 116kPa for the third layer (using Eq.  10). These values 431 

compare very well with the observed values from FO in Figure 10, which suggest around 432 

30kPa, 200kPa and 110kPa for the three layers.  433 

If one was to back calculate the values of α and β, then, the first layer would yield a value of 434 

β=0.21 (whereas Eq.  10 yields around β=0.2), layer 2 would yield a values of α=0.8 435 

(whereas the common assumption is 0.5 (Tomlinson 1997)) and the third layer a value of 436 

β=0.2 (in agreement to Eq.  10 that yields around β=0.2 too). So, in the case, the β-method 437 

seems to work well, whereas the appropriate value for α is slightly larger than the commonly 438 

used (0.5). 439 

Similarly, when calculating the ultimate base capacity, one would obtain about 27MPa using 440 

Eq. 12 (i.e. based on c and φ) which is well above the (roughly linear) 12MPa that was 441 

observed from the FOs during this test. Again, the relation for the base capacity seems to 442 

overestimate significantly the observed pile base capacity. 443 
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5. Case study 3: Osterberg-cell pile test at Francis Crick Institute, London. 444 

5.1. Description of pile test 445 

This particular case study focuses on the behaviour of a 31.5m-long, 1500mm diameter 446 

bored pile during a preliminary load test at the Francis Crick Institute. This is a biomedical 447 

research centre situated next to St. Pancras International train station in the London 448 

Borough of Camden. One of the key differences from the previous case studies is the 449 

loading mechanism. Bi-directional Osterberg Cells (O-Cell) (Osterberg 1984) were used to 450 

apply load from the bottom of the pile. Figure 11(a) shows the geometry of the pile and the 451 

local stratigraphy; the ground consists of two thick layers of London Clay and Lambeth 452 

Group, with varying undrained strength, overlying Thanet Sand. 453 

Similar to the previous case study, Fujikura reinforced ribbon cable (JBT-03813) and 8 core 454 

single mode fibre (205-301 Excel OS1 8C 9/125 Loose Tube LSOH Black) were used for 455 

measuring strain and temperature respectively. The installation process was identical to 456 

case study 1 where both fibre optic cables were routed along opposite sides of the 457 

reinforcement cage from the pile head to the top of O-Cell where a 10m long reference loop 458 

was located. A pre-strain of 2000με was induced in the strain cable during installation. 459 

Anchorage was provided by IC-ROC clamps manufactured by Fujikura. To serve as a 460 

comparison, 5 levels of VWSG were installed at 5 levels along the pile depth. The pile test 461 

consisted of a single load cycle reaching a maximum of 8.33MN after 7 loading steps and 462 

then unloading to zero after 3 steps, as shown in Figure 11 (b). 463 

5.2. Data Interpretation 464 

Figure 12(a) shows the measured axial strain profiles of the pile for three selected load 465 

stages from FO and VWSGs. Considering firstly the VWSGs only, it is shown that, as 466 

expected, large values of strain occur at the bottom of the pile (close to the O-cell) and 467 

smaller values occur at the top. Interestingly, at a depth of about 19m, there is a significantly 468 

higher value of VWSG strain which, in practice, could be considered as not representative of 469 

the actual strains in the pile and therefore ignored and discarded by the design engineers. 470 
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Eliminating outliers that do not conform to the expected ranges is common in data 471 

interpretation as instrument malfunctions do occur occasionally. Signs of VWSG malfunction 472 

may not always be clear and these anomalies can be caused by a number of scenarios such 473 

as cable damage. In some cases the recorded data is in fact a true representation which can 474 

be attributed to changes in ground conditions and construction quality.  475 

However, it is observed that the fibre optic cable picks some unexpectedly high values of 476 

strain at a depth of about 18-23m. This is unexpected when the pile diameter is uniform at 477 

that depth and therefore no step is expected in the axial strains. The data indicates that the 478 

pile sustained high localised strains in that region. Similarities in trend for both systems 479 

triggered a further investigation into the soil strata where the nearest borehole log (BH04) 480 

(distance ~10m) recorded a change in soil layers from lignite beds and lower mottled beds in 481 

the Lambeth group at around 18-19m depth. Although such a scenario was not reported in 482 

the construction records, the presence of sandy glauconitic clay may have caused a 483 

localised collapse during the construction of the pile which may have caused necking of the 484 

pile (smaller cross-section). Subsequently, the cross sectional area, A, as well as the 485 

integrity of the concrete (e.g. Young’s modulus, E) at this location would have been 486 

compromised. Therefore, a much higher strain reading would be very likely (εa = Fa/EA).  487 

Computing the axial force by multiplying the axial strains with a constant axial stiffness, EA, 488 

would therefore be unrealistic. Here, a FE model was employed again in which the axial 489 

rigidity, EA, of the pile was kept constant along the pile depth, except at depth of 18-23m at 490 

which it was reduced. After a parametric study, it was found that, when EA at that location 491 

was reduced down to 35% of the initial EA (using again E=30000MPa and A=0.25πd2, 492 

where d is the design diameter shown in Figure 11), a good match was obtained between 493 

the axial strains (Figure 12 (a)) and the vertical displacements (Figure 12 (c)). This apparent 494 

reduction in EA could be due to some pile necking (smaller A) or some mixing of the pile 495 

concrete with adjacent ground materials (smaller E). Then, using the results of the FE 496 

model, the axial force profiles in the pile were calculated by multiplying the axial strains by 497 
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EA everywhere except at depth 18-23m where 0.35EA was used. The latter profiles are 498 

shown in Figure 11 (b) along with the axial force from the FE model. It is shown that a good 499 

comparison was obtained between the two monitoring instruments and the relevant 500 

numerical analysis. As it may be observed the axial force profiles with the non-uniform EA 501 

vary smoothly with the depth (in contrast to the axial strain profiles) and this is expected 502 

because of force equilibrium (since the soil spring stiffness values have not been changed). 503 

It is appreciated here that the use of 0.35EA for the pile analysis is not ideal and it was 504 

literally obtained from a back-analysis matching the observed strain profiles. Perhaps 505 

another option would be to conduct a series of solid FE analyses (e.g. 2D axisymmetric) 506 

which consider different values of reduced E (of blended concrete and soil) and reduced A 507 

(i.e. reduced d2). 508 

Figure 13 (a) shows the calculated shaft friction, SF, profiles for the three chosen values of 509 

applied load, from the FE analysis. Again, these were obtained from the FE model that 510 

reproduced accurately the monitored axial strain and vertical displacements from FOs (see 511 

Figure 12). Furthermore, Figure 13(b)(c) show the evolution of SF with the applied load, P, 512 

and the ‘local’ vertical displacement, u, at two selected depths along the pile, according to 513 

the local soil stratigraphy, i.e. in the London Clay and the Lambeth Group. It is shown that 514 

Lambeth Group which is deeper and closer to the O-cell exhibits early development of shaft 515 

friction with the applied load, P, and that it has a stiffer response than the upper London 516 

Clay, which seems to reach a SF plateau of about 35kPa at about 0.01m displacement. In 517 

contrast, Lambeth Group shows an increasing development of SF which has not reached an 518 

ultimate value in this test. 519 

Finally, Figure 13 (d) shows the relevant design t-z curves following the API (2002) 520 

methodology. Once again, although there are some differences between the observed 521 

(Figure 13 (c)) and design (Figure 13 (d)) curves, in general they seem to agree quite well 522 

providing similar values of ultimate pile shaft resistance. 523 
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5.3. Remarks 524 

The monitoring data from the FO cables agree very well with the monitoring data from the 525 

VWSG. Moreover, the continuity of the FO data is able to highlight a region of localised high 526 

strain development which spreads over 6-8m in the pile shaft. A high value of strain was also 527 

captured by the VWSG sensors at the same depth, but as this was only a single value it 528 

could easily have been ignored and its significant difference from the other data points be 529 

erroneously attributed to instrument malfunction. However, the presence of continuous FO 530 

data here was able to support the localised high values of strain which might be due to some 531 

low quality concrete material of the pile or some mixing of ground material with pile concrete. 532 

Moreover, the availability of these monitoring data allows the derivation of shaft friction 533 

development curves with the applied load or vertical displacement. These curves show that 534 

the developed shaft friction in the deeper soil layers (e.g. Lambeth Group), i.e. closer to the 535 

O-cell is, as expected, higher than the corresponding friction at the top of the pile, close to 536 

the ground surface. 537 

Using Eq.  9 (i.e. based on Su) and the geotechnical data in Figure 11 one would obtain an 538 

ultimate value of shaft capacity of 23-98kPa for the first layer and about 100-121kPa for the 539 

second layer. These values compare well with the observed values from FO in Figure 13, 540 

which suggest average values of around 30kPa and 150kPa for the two layers. It is shown 541 

that the shaft friction values interpreted from the observed FO data are very close to the 542 

expected design based on Eq.  9. Finally, if one was to back calculate the values of α in Eq.  543 

9, then, the two layers would yield values of α=0.25 and α=0.68 respectively (whereas the 544 

common assumption is 0.5 (Tomlinson 1997)). 545 

6. Conclusions 546 

This paper presents the application of distributed fibre optic strain measurement technology 547 

for monitoring the actual field behaviour of axially loaded piles. The fibre optic data from 548 

three representative case studies of pile load tests conducted recently in London are 549 
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analysed and compared to spatially-discrete point VWSGs and relevant simple finite-element 550 

analyses. The main findings of this study are the following: 551 

 The BOTDR distributed monitoring system is able to provide a continuous profile of 552 

the induced strain within piles and this offers more confidence in determining the 553 

developed shaft friction profiles along the pile. It is also shown that the availability of 554 

continuous strain measurements offers a clear view of the condition of the entire pile 555 

and hence provides an indication of any localised regions of weakness, shaft area 556 

inhomogeneity or strain concentration. This is clearly a limitation of discrete 557 

monitoring systems such as VWSG, which do not provide adequate information for 558 

the whole length of the pile. 559 

 560 

 The distributed FO data can provide reliable information about vertical pile 561 

displacements by direct integration of the spatially-continuous strain data. The 562 

calculated displacements from the FO strains were verified against the 563 

displacements obtained from a relevant FE model. It was found that such vertical 564 

displacement profiles are very useful in calibrating the model parameters of a FE 565 

model.  566 

 567 

 An available and reliable set of monitoring data over the whole length of the pile 568 

allows an estimation of the shaft friction development curves with the applied load or 569 

vertical displacement (load-transfer) which may be used in future design of piles in a 570 

similar geographical region and soil stratigraphy. 571 

 572 

 The obtained values of shaft friction and base resistance were compared with 573 

expected values from existing methods of geotechnical design (e.g. α and β-574 

methods) and were generally found to be in good agreement. The “observed” values 575 
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of α and β were back-analysed and were also found to be, in general, in good 576 

agreement with the suggested values from the literature. 577 

 578 

 The obtained load-transfer (t-z and q-z) curves were compared with design curves 579 

from the literature (API). Although notable differences were observed regarding the 580 

pile base curves, the pile shaft curves were generally in good agreement. 581 
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Nomenclature 591 

A – pile cross-sectional area 592 

CE – optical fibre parameter 593 

CT – optical fibre parameter 594 

CTT – optical fibre parameter 595 

d – nonlinear model degradation parameter 596 

D – pile diameter 597 

E – pile Young’s modulus 598 
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Fa – axial pile force 599 

h – nonlinear model hardening parameter 600 

km – nonlinear model maximum subgrade modulus parameter 601 

L – total length of pile 602 

M – optical fibre strain coefficient 603 

N – optical fibre temperature coefficient 604 

Nc – pile end bearing capacity factor 605 

nf – fibre core refractive index 606 

P – top load value 607 

qb – pile base pressure 608 

r – pile radius 609 

SF – shaft friction 610 

Su – undrained soil shear strength 611 

t – nonlinear model shear stress parameter 612 

tm – nonlinear model maximum shear stress parameter 613 

u – vertical displacement 614 

vα – acoustic velocity in the optical fibre 615 

vb – central Brillouin frequency 616 

vb0 – central Brillouin frequency at zero strain and temperature difference 617 

y – depth 618 
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z – local vertical displacement 619 

α – adhesion factor 620 

ΔT – temperature change 621 

ΔvbS – Brillouin frequency change reading from “strain cable” 622 

ΔvbT – Brillouin frequency change reading from “temperature cable” 623 

γ – soil unit weight 624 

εa – axial pile strain  625 

εmech – mechanical strain 626 

εreal – real (observed) strain 627 

εtemp – thermal expansion strain 628 

λl – wavelength of the input light 629 

ν – Poisson’s ratio 630 
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 796 

Appendix A 797 

The numerical finite element analysis used in this paper is described in Figure 14. A vertical 798 

axially-loaded pile is modelled with a series of linear-elastic two-noded beam elements with 799 

vertical displacement degrees-of-freedom only and a series of nonlinear springs, 800 

representing the surrounding soil, attached to each node. 801 
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The behaviour of the soil spring is governed by a nonlinear load-transfer curve that follows 802 

the Degradation and Hardening Hyperbolic Model (DHHM) model of (Pelecanos & Soga 803 

2017) described by Eq.  13.  804 

 805 

Eq.  13 806 

Where km is the maximum stiffness for displacement, z=0 (units: [force/length3]), tm is the 807 

“maximum” value of shear stress, t (maximum only in the case of no hardening/softening, i.e. 808 

h=0) (units: [force/length2]), d is the degradation parameter (units: [-]), that governs the 809 

degradation of subgrade modulus, k, with displacement, z, and h is the hardening parameter 810 

(units: [-]), that mostly governs the model behaviour at large displacements, z. It should be 811 

noted here that some t-z curves (see Section 1) include the effect of the pile diameter too, 812 

but in the considered cases that mostly involved London Clay and large pile diameters (i.e. 813 

no significant arching) it is expected that the diameter doesn't affect the obtained t-z curves. 814 

The values of the 4 parameters of the model (km, tm, d, h) are obtained by matching the axial 815 

strain, εa(z), and vertical displacement, u(z), profiles resulting from the numerical model and 816 

those observed in the field as shown in Figure 6 (a) (c), Figure 9 (a) (c) and Figure 12 (a) (c). 817 

The equations satisfying global equilibrium of the pile-soil problem follow a standard static 818 

finite element formulation (Bathe 1996) and are described by Eq.  14. 819 

 820 

Eq.  14 821 

Where, [Kp] and [Ks] are the global pile and soil stiffness matrices respectively, which contain 822 

information about the geometry and the material properties of the pile and soil respectively, 823 

{u} is the vector of the displacement degrees-of-freedom and {F} is the vector of the 824 

externally applied forces. 825 
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Boundary conditions applied consist only of the applied load which is specified as a known 826 

value in the {F} vector; at the first node for a top-loaded pile or at the last node for a bottom-827 

loaded O-cell test. Finally, the numerical model parameters adopted for the analyses of the 828 

case studies presented in this paper (which, as explained before, were obtained by matching 829 

the observed pile response) are listed in Table 1. 830 

Table 1. Parameters of the numerical FE beam-spring model for all cases considered 831 

Case 1 – Broadgate Pile 

Layer Depth [m] km [MN/m3] tm [MN/m2] d [] h [] 

1 0 – 6 8 0.011 2 0.8 

2 6 – 12 14 0.157 0.9 1.5 

3 12 – 19 16 0.136 2.5 1 

4 19 – 25 2 0.008 1.2 1 

Base 25 459 65573 1 1 

Case 2 – East Village Pile 

Layer Depth [m] km [MN/m3] tm [MN/m2] d [] h [] 

1 0 – 14 14 0.053 1 1 

2 14 – 23 37 0.223 1 1 

3 23 – 32 24 0.195 1.6 1 

Base 32 513 17.113 1 1 

Case 3 – Francis Crick Pile 

Layer Depth [m] km [MN/m3] tm [MN/m2] d [] h [] 

1 0 – 21 21 0.036 3 1 

2 1 – 25 57 0.117 3 0.7 

 832 
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Appendix B 833 

The data used for the API (2002) curves shown in Figure 7, Figure 10, Figure 13 are listed in 834 

Table 2. These curves depend only on the soil material properties and the geometry 835 

(diameter, D) of the pile. The values for tult were obtained by using Eq.  9 and Eq.  10 for clay 836 

and sand respectively, whereas those for qult were obtained by using Eq.  11 and Eq. 12 for 837 

clay and sand respectively. 838 

Table 2. Data used for the API (2002) curves. 839 

t-z for sand 

z [in] 0 0.1 0.4      

t/tult [-] 0 1 1      

t-z for clay 

z/D [-] 0 0.0016 0.0031 0.0057 0.008 0.01 0.02 0.03 

t/tult [-] 0 0.3 0.5 0.75 0.9 1 0.9 0.9 

q-z for sand & clay 

z/D [-] 0 0.002 0.13 0.042 0.073 0.1 0.2  

q/q_ult 0 0.25 0.5 0.75 0.9 1 1  

 840 

Figure Captions 841 

Figure 1. Principle of distributed fibre optic sensing using BOTDR. 842 

Figure 2. Fibre optic cables used at the pile cases studied: (a) Fujikura reinforced 843 
“strain cable” and (b) Unitube “temperature cable”. 844 

Figure 3. Schematic illustration of FO installation and monitoring of piled foundations. 845 

Figure 4. View of installed fibre optic cables and vibrating wire strain gauges on the 846 
pile cage: (a) detailed view of clamp, (b) general view of installed sensors. 847 

Figure 5. Description of Case 1 – Broadgate pile load test case: (a) pile geometry & 848 
soil stratigraphy, (b) test schedule 849 

Figure 6. Monitored data profiles for Case 1 – Broadgate: (a) axial strain, (b) axial 850 
force and (c) vertical displacement. 851 
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Figure 7. Calculated pile shaft friction from FE analysis for Case 1 – Broadgate: (a) 852 
shaft friction profiles, (b) shaft friction development with applied load, (c) shaft 853 
friction development with vertical displacement, and (d) relevant API t-z and q-z 854 
curves. 855 

Figure 8. Description of Case 2 – East Village pile load test case: (a) pile geometry & 856 
soil stratigraphy, (b) test schedule 857 

Figure 9. Monitored data profiles for Case 2 – East Village: (a) axial strain, (b) axial 858 
force and (c) vertical displacement. 859 

Figure 10. Calculated pile shaft friction from FE analysis for Case 2 – East Village: (a) 860 
shaft friction profiles, (b) shaft friction development with applied load, (c) shaft 861 
friction development with vertical displacement, and (d) relevant API t-z and q-z 862 
curves. 863 

Figure 11. Description of Case 3 – Francis Crick pile load test case: (a) pile geometry 864 
& soil stratigraphy, (b) test schedule 865 

Figure 12. Monitored data profiles for Case 3 – Francis Crick: (a) axial strain, (b) axial 866 
force and (c) vertical displacement. 867 

Figure 13. Calculated pile shaft friction from FE analysis for Case 3 – Francis Crick: 868 
(a) shaft friction profiles, (b) shaft friction development with applied load, (c) shaft 869 
friction development with vertical displacement, and (d) relevant API t-z curves. 870 

Figure 14. Numerical analysis model of pile-soil interaction: (a) pile, (b) axial strain 871 
distribution, (c) top load-displacement, (d) numerical beam-spring model and (e) load-872 
transfer curve. 873 

 874 



Click here to download Figure Fig_01.eps 



Click here to download Figure Fig_02a.eps 



Click here to download Figure Fig_02b.eps 



Click here to download Figure Fig_03.eps 



Click here to download Figure Fig_04a.tif 



Click here to download Figure Fig_04b.tif 



��

��

��

Click here to download Figure Fig_05a.eps 



0 10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

Time, t [hours]

Fo
rc

e,
 P

 [k
N

]
Broadgate pile test

Applied load

Click here to download Figure Fig_05b.eps 



−500 0 500

0

5

10

15

20

25

P=720kN

D
ep

th
 fr

om
 p

ile
 to

p 
[m

]

Axial Strain [με]
−1000 0 1000

0

5

10

15

20

25

P=1080kN

D
ep

th
 fr

om
 p

ile
 to

p 
[m

]

Axial Strain [με]

FE
FO
VWSG

−1000 −500 0

0

5

10

15

20

25

P=1985kN

D
ep

th
 fr

om
 p

ile
 to

p 
[m

]

Axial Strain [με]

Click here to download Figure Fig_06a.eps 



−1 0 1

0

5

10

15

20

25

P=720kN

D
ep

th
 fr

om
 p

ile
 to

p 
[m

]

Axial Force [MN]
−2 0 2

0

5

10

15

20

25

P=1080kN

D
ep

th
 fr

om
 p

ile
 to

p 
[m

]

Axial Force [MN]

FO
FE
VWSG

−4 −2 0

0

5

10

15

20

25

P=1985kN

D
ep

th
 fr

om
 p

ile
 to

p 
[m

]

Axial Force [MN]

Click here to download Figure Fig_06b.eps 



0.000 0.005 0.010

0

5

10

15

20

25

P=720kN

D
ep

th
 fr

om
 p

ile
 to

p 
[m

]

0.000 0.010 0.020

0

5

10

15

20

25

P=1080kN

D
ep

th
 fr

om
 p

ile
 to

p 
[m

]

Vertical Displacement [m]
0.000 0.020 0.040

0

5

10

15

20

25

P=1985kN

D
ep

th
 fr

om
 p

ile
 to

p 
[m

]

FO
FE

Click here to download Figure Fig_06c.eps 



0 50

0

5

10

15

20

25

P=720kN

D
ep

th
 fr

om
 p

ile
 to

p 
[m

]

0 50 100

0

5

10

15

20

25

P=1440kN

D
ep

th
 fr

om
 p

ile
 to

p 
[m

]

Shaft Friction [kPa]
0 100 200

0

5

10

15

20

25

P=1985kN

D
ep

th
 fr

om
 p

ile
 to

p 
[m

]

FE

Click here to download Figure Fig_07a.eps 



0 0.5 1 1.5 2
0

100

200

Applied load, P [MN]

S
ha

ft 
Fr

ic
tio

n,
 S

F 
[k

P
a]

0 0.5 1 1.5 2
0

5

10

B
as

e 
pr

es
su

re
, q

b [M
P

a]

Layer 1
Layer 2
Layer 3
Layer 4
Base

Click here to download Figure Fig_07b.eps 



0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
0

100

200

Displacement, uz [m]

S
ha

ft 
Fr

ic
tio

n,
 S

F 
[k

P
a]

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
0

5

10

B
as

e 
pr

es
su

re
, q

b [M
P

a]

Layer 1
Layer 2
Layer 3
Layer 4
Base

Click here to download Figure Fig_07c.eps 



Displacement, uz [m]
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

S
ha

ft 
Fr

ic
tio

n,
 S

F 
[k

P
a]

0

50

100

150

B
as

e 
pr

es
su

re
, q

b [M
P

a]

0

1

2

3

API-Layer 1
API-Layer 2
API-Layer 3
API-Layer 4
API-Base

Click here to download Figure Fig_07d.eps 



�
�

�
�

Click here to download Figure Fig_08a.eps 



0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

Time, t [hours]

Fo
rc

e,
 P

 [M
N

]
East Village pile test

Applied load

Click here to download Figure Fig_08b.eps 



−400 −200 0

0

5

10

15

20

25

30

35

P=6MN
D

ep
th

 fr
om

 p
ile

 to
p 

[m
]

−1000 −500 0

0

5

10

15

20

25

30

35

P=12.25MN

Axial Strain [με]
−1000 −500 0

0

5

10

15

20

25

30

35

P=17.25MN

FE
FO
VWSG

Click here to download Figure Fig_09a.eps 



−10 −5 0

0

5

10

15

20

25

30

35

P=6MN
D

ep
th

 fr
om

 p
ile

 to
p 

[m
]

−20 −10 0

0

5

10

15

20

25

30

35

P=12.25MN

Axial Force [MN]
−40 −20 0

0

5

10

15

20

25

30

35

P=17.25MN

FE
FO
VWSG

Click here to download Figure Fig_09b.eps 



0 0.005 0.01

0

5

10

15

20

25

30

35

P=6MN
D

ep
th

 fr
om

 p
ile

 to
p 

[m
]

0 0.02 0.04

0

5

10

15

20

25

30

35

P=12.25MN

Vertical Displacement [m]
0 0.05

0

5

10

15

20

25

30

35

P=17.25MN

FE
FO

Click here to download Figure Fig_09c.eps 



0 50 100

0

5

10

15

20

25

30

35

P=6MN
D

ep
th

 fr
om

 p
ile

 to
p 

[m
]

0 100 200

0

5

10

15

20

25

30

35

P=12.25MN

Shaft Friction [kPa]
0 100 200

0

5

10

15

20

25

30

35

P=17.25MN

FE

Click here to download Figure Fig_10a.eps 



0 2 4 6 8 10 12 14 16 18
0

100

200

Applied load, P [MN]

S
ha

ft 
Fr

ic
tio

n,
 S

F 
[k

P
a]

0 2 4 6 8 10 12 14 16 18
0

10

20

B
as

e 
pr

es
su

re
, q

b [M
P

a]

Layer 1
Layer 2
Layer 3
Base

Click here to download Figure Fig_10b.eps 



0 0.01 0.02 0.03 0.04 0.05 0.06
0

100

200

Displacement, uz [m]

S
ha

ft 
Fr

ic
tio

n,
 S

F 
[k

P
a]

0 0.01 0.02 0.03 0.04 0.05 0.06
0

10

20

B
as

e 
pr

es
su

re
, q

b [M
P

a]

Layer 1
Layer 2
Layer 3
Base

Click here to download Figure Fig_10c.eps 



Displacement, uz [m]
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

S
ha

ft 
Fr

ic
tio

n,
 S

F 
[k

P
a]

0

50

100

150

B
as

e 
pr

es
su

re
, q

b [M
P

a]

0

10

20

30

API-Layer 1
API-Layer 2
API-Layer 3
API-Base

Click here to download Figure Fig_10d.eps 



Click here to download Figure Fig_11a.eps 



0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

9

Time, t [hours]

Fo
rc

e,
 P

 [M
N

]

Francis Crick pile test

Applied load

Click here to download Figure Fig_11b.eps 



−500 0 500

0

5

10

15

20

25

30

P=4.75MN
D

ep
th

, z
 [m

]

−500 0 500

0

5

10

15

20

25

30

P=7.14MN

Axial strain, εa [με]
−500 0 500

0

5

10

15

20

25

30

P=8.33MN

FE
FO
VWSG

Click here to download Figure Fig_12a.eps 



−10 0 10

0

5

10

15

20

25

30

P=4.75MN
D

ep
th

, z
 [m

]

−20 0 20

0

5

10

15

20

25

30

P=7.14MN

Axial force, Fa [MN]
−20 0 20

0

5

10

15

20

25

30

P=8.33MN

FE
FO
VWSG

Click here to download Figure Fig_12b.eps 



0 0.005 0.01

0

5

10

15

20

25

30

P=4.75MN
D

ep
th

 fr
om

 p
ile

 to
p 

[m
]

0 0.01 0.02

0

5

10

15

20

25

30

P=7.14MN

Vertical Displacement, uz [m]
0 0.01 0.02

0

5

10

15

20

25

30

P=8.33MN

FE
FO

Click here to download Figure Fig_12c.eps 



0 50 100

0

5

10

15

20

25

30

P=4.75MN
D

ep
th

 fr
om

 p
ile

 to
p 

[m
]

0 100 200

0

5

10

15

20

25

30

P=7.14MN

Shaft Friction, SF [kPa]
0 100 200

0

5

10

15

20

25

30

P=8.33MN

FE

Click here to download Figure Fig_13a.eps 



0 1 2 3 4 5 6 7 8 9
0

50

100

150

Applied load, P [MN]

S
ha

ft 
Fr

ic
tio

n,
 S

F 
[k

P
a]

Layer 1
Layer 2

Click here to download Figure Fig_13b.eps 



0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
0

50

100

150

Displacement, uz [m]

S
ha

ft 
Fr

ic
tio

n,
 S

F 
[k

P
a]

Layer 1
Layer 2

Click here to download Figure Fig_13c.eps 



0 0.005 0.01 0.015
Displacement, uz [m]

0

20

40

60

80

100

120
S

ha
ft 

Fr
ic

tio
n,

 S
F 

[k
P

a]

API-Layer 1
API-Layer 2

Click here to download Figure Fig_13d.eps 



�

Click here to download Figure Fig_14.eps 

V
iew

 publication stats
V

iew
 publication stats

https://www.researchgate.net/publication/318912669

