31 research outputs found

    Importance of amoebae as a tool to isolate amoeba-resisting microorganisms and for their ecology and evolution: the Chlamydia paradigm.

    Get PDF
    Free-living amoebae are distributed worldwide and are frequently in contact with humans and animals. As cysts, they can survive in very harsh conditions and resist biocides and most disinfection procedures. Several microorganisms, called amoeba-resisting microorganisms (ARMs), have evolved to survive and multiply within these protozoa. Among them are many important pathogens, such as Legionella and Mycobacteria, and also several newly discovered Chlamydia-related bacteria, such as Parachlamydia acanthamoebae, Estrella lausannensis, Simkania negevensis or Waddlia chondrophila whose pathogenic role towards human or animal is strongly suspected. Amoebae represent an evolutionary crib for their resistant microorganisms since they can exchange genetic material with other ARMs and develop virulence traits that will be further used to infect other professional phagocytes. Moreover, amoebae constitute an ideal tool to isolate strict intracellular microorganisms from complex microbiota, since they will feed on other fast-growing bacteria, such as coliforms potentially present in the investigated samples. The paradigm that ARMs are likely resistant to macrophages, another phagocytic cell, and that they are likely virulent towards humans and animals is only partially true. Indeed, we provide examples of the Chlamydiales order that challenge this assumption and suggest that the ability to multiply in protozoa does not strictly correlate with pathogenicity and that we should rather use the ability to replicate in multiple and diverse eukaryotic cells as an indirect marker of virulence towards mammals. Thus, cell-culture-based microbial culturomics should be used in the future to try to discover new pathogenic bacterial species

    Permissivity of fish cell lines to three Chlamydia-related bacteria: Waddlia chondrophila, Estrella lausannensis and Parachlamydia acanthamoebae.

    Get PDF
    Epitheliocystis is an infectious disease affecting gills and skin of various freshwater and marine fishes, associated with high mortality and reduced growth of survivors. Candidatus Piscichlamydia salmonis and Clavochlamydia salmonicola have recently been identified as aetiological agents of epitheliocystis in Atlantic Salmon. In addition, several other members of the Chlamydiales order have been identified in other fish species. To clarify the pathogenicity of Chlamydia-like organisms towards fishes, we investigated the permissivity of two fish cell lines, EPC-175 (Fathead Minnow) and RTG-2 (rainbow trout) to three Chlamydia-related bacteria: Waddlia chondrophila, Parachlamydia acanthamoebae and Estrella lausannensis. Quantitative PCR and immunofluorescence demonstrated that W. chondrophila and, to a lesser extent, E. lausannensis were able to replicate in the two cell lines tested. Waddlia chondrophila multiplied rapidly in its host cell and a strong cytopathic effect was observed. During E. lausannensis infection, we observed a limited replication of the bacteria not followed by host cell lysis. Very limited replication of P. acanthamoebae was observed in both cell lines tested. Given its high infectivity and cytopathic effect towards fish cell lines, W. chondrophila represents the most interesting Chlamydia-related bacteria to be used to develop an in vivo model of epitheliocystis disease in fishes

    Trafficking of Estrella lausannensis in human macrophages.

    Get PDF
    Estrella lausannensis is a new member of the Chlamydiales order. Like other Chlamydia-related bacteria, it is able to replicate in amoebae and in fish cell lines. A preliminary study investigating the pathogenic potential of Chlamydia-related bacteria found a correlation between antibody response to E. lausannensis and pneumonia in children. To further investigate the pathogenic potential of E. lausannensis, we determined its ability to grow in human macrophages and its intracellular trafficking. The replication in macrophages resulted in viable E. lausannensis; however, it caused a significant cytopathic effect. The intracellular trafficking of E. lausannensis was analyzed by determining the interaction of the Estrella-containing inclusions with various endocytic markers as well as host organelles. The E. lausannensis inclusion escaped the endocytic pathway rapidly avoiding maturation into phagolysosomes by preventing both EEA-1 and LAMP-1 accumulation. Compared to Waddlia chondrophila, another Chlamydia-related bacteria, the recruitment of mitochondria and endoplasmic reticulum was minimal for E. lausannensis inclusions. Estrella lausannensis appears to use a distinct source of nutrients and energy compared to other members of the Chlamydiales order. In conclusion, we hypothesize that E. lausannensis has a restricted growth in human macrophages, due to its reduced capacity to control programmed cell death

    Permissivity of insect cells to Waddlia chondrophila, Estrella lausannensis and Parachlamydia acanthamoebae.

    Get PDF
    Recent large scale studies questioning the presence of intracellular bacteria of the Chlamydiales order in ticks and fleas revealed that arthropods, similarly to mammals, reptiles, birds or fishes, can be colonized by Chlamydia-related bacteria with a predominant representation of the Rhabdochlamydiaceae and Parachlamydiaceae families. We thus investigated the permissivity of two insect cell lines towards Waddlia chondrophila, Estrella lausannensis and Parachlamydia acanthamoebae, three bacteria representative of three distinct families within the Chlamydiales order, all documented in ticks and/or in other arthropods. We demonstrated that W. chondrophila and E. lausannensis are able to very efficiently multiply in these insect cell lines. E. lausannensis however induced a rapid cytopathic effect, which somehow restricted its replication. P. acanthamoebae was not able to grow in these cell lines even if inclusions containing a few replicating bacteria could occasionally be observed

    Diverse Stress-Inducing Treatments cause Distinct Aberrant Body Morphologies in the Chlamydia-Related Bacterium, Waddlia chondrophila.

    Get PDF
    Chlamydiae, such as Chlamydia trachomatis and Chlamydia pneumoniae, can cause chronic infections. It is believed that persistent forms called aberrant bodies (ABs) might be involved in this process. AB formation seems to be a common trait of all members of the Chlamydiales order and is caused by distinct stress stimuli, such as β-lactam antibiotics or nutrient starvation. While the diverse stimuli inducing ABs are well described, no comprehensive morphological characterization has been performed in Chlamydiales up to now. We thus infected mammalian cells with the Chlamydia-related bacterium Waddlia chondrophila and induced AB formation using different stimuli. Their morphology, differences in DNA content and in gene expression were assessed by immunofluorescence, quantitative PCR, and reverse transcription PCR, respectively. All stimuli induced AB formation. Interestingly, we show here for the first time that the DNA gyrase inhibitor novobiocin also caused appearance of ABs. Two distinct patterns of ABs could be defined, according to their morphology and number: (i) small and multiple ABs versus (ii) large and rare ABs. DNA replication of W. chondrophila was generally not affected by the different treatments. Finally, no correlation could be observed between specific types of ABs and expression patterns of mreB and rodZ genes

    Evaluation of a Multiplex Real-Time PCR Assay for Detecting Chlamydia trachomatis in Vaginal Samples.

    Get PDF
    Chlamydia trachomatis is an important cause of sexually transmitted infections (STI) in Western countries. It is often asymptomatic, and thus, left untreated, and can have severe negative consequences, such as tubal infertility or adverse pregnancy outcomes. Other sexually transmitted microorganisms, such as Neisseria gonorrhoeae and Trichomonas vaginalis, as well as normal residents of the vaginal flora, such as genital mycoplasmas, also negatively impact human sexual and reproductive health. We evaluated the reliability of the Seegene Allplex STI Essential Assay for C. trachomatis detection using the real-time qPCR routinely used in our diagnostic laboratories as the gold standard. The Seegene assay displayed a sensitivity of 97.8% and a specificity of 98.9%. As this assay can also detect six other urogenital pathogens, we applied it to 404 samples from women who attended Lausanne University Maternity Hospital and obtained the following prevalence rates: 2.5% for C. trachomatis, 3.5% for Mycoplasma hominis, 6.3% for Ureaplasma urealyticum, and 27.7% for Ureaplasma parvum. Two samples were positive for Trichomonas vaginalis, and one sample was positive for Mycoplasma genitalium. Bacterial vaginosis was present in 4.5% of the cases and was strongly associated with M. hominis. Finally, we confirmed the association between C. trachomatis infection and pre-term birth (p = 0.03) but could not detect any association of this condition with other urogenital pathogens (Mycoplasma/Ureaplasma). In conclusion, given its high sensitivity and specificity for C. trachomatis DNA detection as well as its multiplex format, which simultaneously provides results for six other urogenital pathogens, the Seegene Allplex™ STI Essential Assay represents an appealing diagnostic tool in modern microbiology laboratories

    A predation assay using amoebae to screen for virulence factors unearthed the first W. chondrophila inclusion membrane protein.

    Get PDF
    Waddlia chondrophila is an intracellular bacterium phylogenetically related to the well-studied human and animal pathogens of the Chlamydiaceae family. In the last decade, W. chondrophila was convincingly demonstrated to be associated with adverse pregnancy outcomes in humans and abortions in animals. All members of the phylum Chlamydiae possess a Type Three Secretion System that they use for delivering virulence proteins into the host cell cytosol to modulate their environment and create optimal conditions to complete their life cycle. To identify W. chondrophila virulence proteins, we used an original screening approach that combines a cosmid library with an assay monitoring resistance to predation by phagocytic amoebae. This technique combined with bioinformatic data allowed the identification of 28 candidate virulence proteins, including Wimp1, the first identified inclusion membrane protein of W. chondrophila

    Multiplexed nanoplasmonic biosensor for one-step simultaneous detection of Chlamydia trachomatis and Neisseria gonorrhoeae in urine.

    Get PDF
    Development of rapid and multiplexed diagnostic tools is a top priority to address the current epidemic problem of sexually transmitted diseases. Here we introduce a novel nanoplasmonic biosensor for simultaneous detection of the two most common bacterial infections: Chlamydia trachomatis and Neisseria gonorrhoeae. Our plasmonic microarray is composed of gold nanohole sensor arrays that exhibit the extraordinary optical transmission (EOT), providing highly sensitive analysis in a label-free configuration. The integration in a microfluidic system and the precise immobilization of specific antibodies on the individual sensor arrays allow for selective detection and quantification of the bacteria in real-time. We achieved outstanding sensitivities for direct immunoassay of urine samples, with a limit of detection of 300 colony forming units (CFU)/mL for C. trachomatis and 1500CFU/mL for N. gonorrhoeae. The multiplexing capability of our biosensor was demonstrated by analyzing different urine samples spiked with either C. trachomatis or N. gonorrhoeae, and also containing both bacteria. We could successfully detect, identify and quantify the levels of the two bacteria in a one-step assay, without the need for DNA extraction or amplification techniques. This work opens up new possibilities for the implementation of point-of-care biosensors that enable fast, simple and efficient diagnosis of sexually transmitted infections

    CRISPR System Acquisition and Evolution of an Obligate Intracellular Chlamydia-Related Bacterium.

    Get PDF
    Recently, a new Chlamydia-related organism, Protochlamydia naegleriophila KNic, was discovered within a Naegleria amoeba. To decipher the mechanisms at play in the modeling of genomes from the Protochlamydia genus, we sequenced the full genome of Pr. naegleriophila, which includes a 2,885,090 bp chromosome and a 145,285 bp megaplasmid. For the first time within the Chlamydiales order, we describe the presence of a clustered regularly interspaced short palindromic repeats (CRISPR) system, the immune system of bacteria, located on the chromosome. It is composed of a small CRISPR locus comprising eight repeats and associated cas-cse genes of the subtype I-E. A CRISPR locus is also present within Chlamydia sp. Diamant, another Pr. naegleriophila strain, suggesting that the CRISPR system was acquired by a common ancestor of Pr. naegleriophila, after its divergence from Pr. amoebophila. Both nucleotide bias and comparative genomics approaches identified probable horizontal gene acquisitions within two and four genomic islands in Pr. naegleriophila KNic and Diamant genomes, respectively. The plasmid encodes an F-type conjugative system highly similar to 1) that found in the Pam100G genomic island of Pr. amoebophila UWE25 chromosome, as well as on the plasmid of Rubidus massiliensis and 2) to the three genes remaining in the chromosome of Parachlamydia acanthamoebae strains. Therefore, this conjugative system was likely acquired on an ancestral plasmid before the divergence of Parachlamydiaceae Overall, this new complete Pr. naegleriophila genome sequence enables further investigation of the dynamic processes shaping the genomes of the family Parachlamydiaceae and the genus Protochlamydia
    corecore