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Abstract 19 

Recent large scale studies questioning the presence of intracellular bacteria of the 20 

Chlamydiales order in ticks and fleas revealed that arthropods, similarly to mammals, 21 

reptiles, birds or fishes, can be colonized by Chlamydia-related bacteria with a 22 

predominant representation of the Rhabdochlamydiaceae and Parachlamydiaceae 23 

families. We thus investigated the permissivity of two insect cell lines towards Waddlia 24 

chondrophila, Estrella lausannensis and Parachlamydia acanthamoebae, three bacteria 25 

representative of three distinct families within the Chlamydiales order, all documented in 26 

ticks and/or in other arthropods. We demonstrated that W. chondrophila and E. 27 

lausannensis are able to very efficiently multiply in these insect cell lines. E. 28 

lausannensis however induced a rapid cytopathic effect, which somehow restricted its 29 

replication. P. acanthamoebae was not able to grow in these cell lines even if inclusions 30 

containing a few replicating bacteria could occasionally be observed. 31 

32 
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1. Introduction 36 

All bacteria belonging to the Chlamydiales order are strict intracellular organisms sharing 37 

a biphasic life cycle that involves two distinct bacterial forms, an infectious Elementary 38 

Body (EB) capable of attaching to and entering into its host cell, but that cannot replicate 39 

before it differentiates into a metabolically active form, called Reticulate Body (RB). At 40 

the end of the multiplication phase, RBs differentiate back into infectious particles and 41 

lyse their host cells to start a new cycle [32]. Chlamydiales bacteria have been isolated 42 

from samples of multiple origins such as mammals, birds, fishes, reptiles or protozoa 43 

revealing the large and probably still largely underestimated diversity of their ecological 44 

niches (reviewed in [22, 36]). Besides the well-studied human and animal pathogens 45 

belonging to the Chlamydiaceae family (such as Chlamydia pneumoniae, C. trachomatis 46 

or C. abortus), this clade also comprises 8 other family-level lineages whose members 47 

are very diverse being either emerging pathogens able to grow in cells of various origins 48 

(Waddlia chondrophila, Simkania negevensis) or harmless environmental species only 49 

replicating in amoebae (Protochlamydia amoebophila, Neochlamydia hartmanellae). 50 

Recent large scale studies questioning the presence of Chlamydiales bacteria in ticks 51 

and fleas [13], [Pilloux et al. submitted 2015] revealed that arthropods may be colonized 52 

by these bacteria and thus could serve as reservoir and vectors for potential novel 53 

pathogens. In this context, we investigated the permissivity of two insect cell lines, 54 

Aedes albopictus larva cells and Spodoptera frugiperda ovary cells (Sf9), towards 55 

Waddlia chondrophila, Estrella lausannensis and Parachlamydia acanthamoebae, three 56 

Chlamydia-related bacteria representative of three different families, all belonging to the 57 
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Chlamydiales order, documented in fleas and/or ticks and whose pathogenic potential 58 

for humans and cattle is confirmed or highly suspected [2-6, 9, 15, 16, 23, 34, 37, 14].  59 

 60 

2. Materials and methods 61 

2.1. Cell culture and bacterial strains 62 

Aedes albopictus clone C6/36 larva cells (ATCC® CRL-1660™) and Spodoptera 63 

frugiperda ovarian epithelial cells (Sf9) (ATCC® CRL-1711™) were routinely maintained 64 

respectively at 28°C and 5%CO2 in Dulbecco’s modified essential medium (DMEM; 65 

Gibco Invitrogen, Basel, Switzerland) supplemented with 10% foetal calf serum 66 

(Biochrom, Berlin, Germany) or at 27°C in Grace insect medium (GIM; Gibco Invitrogen, 67 

Basel, Switzerland) supplemented with 10% foetal calf serum.  68 

W. chondrophila strain WSU 86-1044 (ATCC VR-1470), E. lausannensis strain CRIB 30 69 

and P. acanthamoebae strain Hall’s coccus were grown at 32°C within Acanthamoeba 70 

castellanii strain ATCC 30010, as described in [19].  71 

 72 

http://www.lgcstandards-atcc.org/Products/All/CRL-1660.aspx
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2.2. Infection procedure 73 

Insect cells were seeded at 1x105 cells per well in 24-wells microplates (Corning) the 74 

day before infection. Infection was performed at 28°C or 27°C, as described in [24], with 75 

a 5 days-old culture of bacteria in A castellanii diluted, if not otherwise described, 1:1000 76 

for W. chondrophila (MOI: 1-20) and P. acanthamoebae (MOI: 0.1-1) and 1:2000 for E. 77 

lausannensis (MOI: 1-10) 78 

 79 

2.3. Immunofluorescence and confocal microscopy 80 

At different time points after infection, immunofluorescence was performed on cells 81 

cultivated on glass coverslips following precisely the protocol described in [27] except 82 

that rabbit anti-P. acanthamoebae and mouse anti-E. lausannensis were used 83 

respectively at a 1:1000 and 1:500 dilution. Secondary antibody was diluted 1:500 and 84 

mixed with a 1/50 dilution of Concanavalin A (Molecular Probe) and 150 ng/ml DAPI 85 

(Molecular Probe, Eugene, Oregon, USA). Cells were observed under an epifluorescent 86 

microscope (Axioplan 2, Zeiss, Feldbach, Switzerland) or a confocal microscope 87 

(AxioPlan 2 LSM 710, Zeiss).  88 

 89 

2.4. Electron microscopy  90 

One T25 flask of Aedes albopictus or Sf9 cells was infected as described above with W. 91 

chondrophila and E. lausannensis diluted 1/200. 24 hours post-infection, cells were 92 

washed once with PBS and harvested. After one centrifugation step of 10 min at 1’000 93 

rpm, cells were resuspended in phosphate buffer (19ml of 0.2 M NaH2PO4 + 81ml of 94 

0.2M Na2HPO4, pH 7.4) containing 0.2% glutaraldehyde (Fluka Biochemika, Buchs, 95 

Switzerland) and 4% paraformaldehyde (Electron Microscopy Sciences, Hatfield, USA) 96 
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and incubated overnight at 4°C. After two more washing steps with phosphate buffer, 97 

cells were prepared as described previously [10]. Thin sections on grids were examined 98 

with a transmission electron microscope Philips CM 100 (Philips, Eindhoven, The 99 

Netherlands).  100 

 101 

2.5. Quantitative PCR 102 

Cells were harvested at different time points after infection, genomic DNA was extracted 103 

following manufacturer’s instructions (Wizard SV Genomic DNA purification kit, 104 

Promega, Madison, WI) and qPCR was performed as described in [24]. To account for 105 

variation in the inocula used for infection, bacterial growth is expressed as a fold 106 

increase in the number of bacteria after normalization using time point “0h” as reference.  107 

 108 

2.6. Cell viability 109 

Cell viability was determined with a propidium iodide assay as described in [14] except 110 

that propidium iodide was added immediately after infection. Positive control was 111 

obtained by incubating non-infected cells 5 minutes with MetOH at 112 

 -20°C. Results were normalized considering the positive control as 100% mortality.  113 

 114 

3. Results 115 

3.1. Growth kinetic in insect cells 116 

Two insect cell lines, Aedes albopictus larva cells and Sf9 (S. frugiperda ovarian 117 

epithelial cells) were infected with either W. chondrophila, E. lausannensis or P. 118 

acanthamoebae and bacterial growth was monitored using specific quantitative PCRs 119 

(qPCRs) developed in our laboratory [11, 16, 30]. In parallel, bacterial multiplication was 120 
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also assessed by immunofluorescence and confocal microscopy using in-house 121 

polyclonal antibodies and by electron microscopy. 122 

123 

3.1.1. W. chondrophila and E. lausannensis 124 

Results shown in Fig. 1 indicated that W. chondrophila and E. lausannensis are both 125 

able to efficiently replicate in insect cells, leading to an increase of bacterial genomic 126 

DNA copies of about 3 logs in 48 hours for W. chondrophila (Fig. 1 panels a and b) and 127 

of about 2 logs in 48 hours for E. lausannensis (Fig. 1 panels c and d). During the first 8 128 

hours following infection, EBs enter their insect cell host, differentiate into RBs and 129 

create a replicative niche able to support their exponential multiplication. Inclusions 130 

containing dividing bacteria can already be observed by immunofluorescence and 131 

confocal microscopy 24 hours post infection (Fig. 2A, panels a,b,c,and d). Similarly to 132 

what has been described in other cell lines [24, 25], W. chondrophila then exponentially 133 

replicate until 48 hours p.i. and ultimately lyse their host to release infectious particles 134 

ready to infect new insect cells (data not shown). Replication of W. chondrophila and E. 135 

lausannensis was also documented in Sf9 cells by electron microscopy 24 hours post 136 

infection (Fig. 2B). The W. chondrophila-containing vacuoles were surrounded by tightly 137 

associated mitochondria, a feature that was also described in other cell lines [12, 25]. 138 

139 

3.1.2. P. acanthamoebae 140 

No growth of P. acanthamoebae could be detected by qPCR or immunofluorescence in 141 

the two insect cell lines tested (Fig.1 and 2A, panels e and f) even after 7 days. 142 

However, when cells were infected with a 10 fold higher bacterial load (MOI of 1-10), 143 

rare inclusions containing replicating bacteria could be observed by confocal microscopy 144 
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in Aedes albopictus cells (Fig. 2A, panel g). This bacterial replication is very limited and 145 

restricted to about 3% of all infected cells.  146 

 147 

3.2. Cytophatic effect 148 

Direct examination by confocal microscopy of E. lausannensis infection revealed that 149 

these bacteria, like W. chondophila, efficiently multiplied in insect cells but these cells 150 

were more rapidly lysed than those infected with W. chondrophila. This observed 151 

cytopathic effect was confirmed in a host cell viability assay based on propidium iodide 152 

incorporation that showed, 48 hours post infection, 100% mortality of Aedes albopictus 153 

cells infected with E. lausannensis versus 50% in cells infected with W. chondrophila 154 

and 23% in non-infected cells (Fig. 3). Results were normalized using methanol-treated 155 

cells at time of infection as a positive control of 100% mortality. Mortality rate over 100% 156 

are thus explained by an increase, at later time points, of the total number of cells that 157 

ultimately died. We could observe a weak cytopathic effect of P. acanthamoebae 158 

infection that probably resulted more from the lower fitness of infected cells than from 159 

the few replicating bacteria.  160 

In Sf9 cells, a similar cytopathic effect of E. lausannensis was observed by confocal 161 

microscopy (data not shown), however, due to interferences of the culture medium with 162 

the propidium iodide assay, this increased cell mortality could not be precisely 163 

quantified.  164 

 165 

4. Discussion 166 
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In the present study, we demonstrated that W. chondrophila and E. lausannensis are 167 

able to enter and efficiently multiply in two different insect cell lines. E. lausannensis 168 

growth is however slightly less efficient than W. chondrophila growth, a difference that 169 

can be explained by the rapid cytopathic effect of E. lausannensis, which restricts the 170 

number of replication rounds possible.  171 

W. chondrophila is an emerging pathogen for humans and animals and it is able to 172 

readily grow at temperatures ranging from 25°C to 37°C in mammalian cell lines of 173 

diverse origins [12, 21, 25, 28], in fish cells [24] as well as in protozoa [17, 31]. E. 174 

lausannensis, whose pathogenic potential is currently under investigation, was first 175 

isolated from an environmental water sample and is also able to grow at different 176 

temperatures in protozoa, fishes and mammalian cells [14, 24, 30]. Strikingly, these two 177 

organisms that display such a broad host range, both encode an extended family of 178 

OmpA proteins with beta-barrel structure that were recently shown to be dominant in the 179 

outer membrane of W. chondrophila and to play a role in adhesion of this bacteria to its 180 

host [1, 7, 8, 26, 29]. In addition, Simkania negevensis, another Chlamydia-related 181 

bacteria that also possess a large family of 37 MOMP-like proteins in its outer 182 

membrane similarly displays a wide host range [1, 27]. Based on these observations, we 183 

recently hypothesized that the large diversity of the OmpA protein family is linked to the 184 

wide host range of these bacteria [26]. In addition, ability to grow in multiple and diverse 185 

eukaryotic cells correlates in most cases with virulence towards mammals [27].  186 

P. acanthamoebae only encodes one homolog of MOMP and its efficient growth seems 187 

to be restricted to amoebal hosts [18, 20]. Several studies have reported a limited 188 

replication of this bacteria in host cells such as bone-marrow derived macrophages, fish 189 

or insect cell lines [24, 33, 35]. This present work also demonstrated that growth of P. 190 
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acanthamoebae in insect cells is limited and restricted to a few cells. Sixt et al. also 191 

reported a limited P. acanthamoebae replication in Aedes albopictus, Sf9 and 192 

Drosophila S2 cells and they observed a bacteria-induced programmed cell death in the 193 

last two cell lines [35]. We did not observe nuclear fragmentation in P. acanthamoebae-194 

infected cells and cell viability was stable during the first 72 hours post infection, which is 195 

not in agreement with apoptosis. Furthermore, preliminary experiments performed in 196 

Aedes albopictus cells in presence of a pan-caspase inhibitor did not demonstrate an 197 

enhanced multiplication of P. acanthamoebae (A. Croxatto, unpublished). 198 

In conclusion, we demonstrated the permissivity of insect cells to Waddla chondrophila 199 

and Estrella lausannensis and further highlighted the very broad host range of these 200 

possible pathogens and the potential role of insects as reservoir or vectors for these 201 

strict intracellular bacteria. 202 

203 
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7. Figure legends 318 

Fig. 1 Bacterial growth within insect cells 319 

W. chondrophila (panels a and b), E. lausannensis (panels c and d) and P. 320 

acanthamoebae (panels e and f) replication measured by qPCR in Aedes albopictus 321 

cells (panels a, c and e) and in Sf9 cells (panels b, d and f). Values are normalized to 322 

the number of bacteria at 0h post infection (p.i). Results are the mean +/-SD of at least 323 

four independent experiments performed in duplicates. 324 

 325 

Fig.2 Bacterial replication assessed by confocal and electron microscopy 326 

A. Immunofluorescence and confocal microscopy of W. chondrophila (panels a and 327 

b), E. lausannensis (panels c and d) and P. acanthamoebae (panels e and f) in 328 

Aedes albopictus cells (panels a, c and e) and in Sf9 cells (panels b, d and f) 24 329 

hours post-infection. Panel g displays one rare inclusion of P. acanthamoebae in 330 

Aedes albopictus cells 4 days post infection. Bacteria (green) are stained with 331 

species-specific polyclonal antibodies and insect cells (red) are stained with Texas 332 

Red-conjugated Concanavalin A. Scale bar 10 m. 333 

B. Electron micrographs of W. chondrophila (panel a) and E. lausannensis (panel b) 334 

in Sf9 cells 24 hours post infection. Scale bar: 1 m. 335 

 336 

Fig. 3 Cell viability 337 

Aedes albopictus cells viability was determined with a propidium iodide assay at different 338 

time points after infection. Results are the mean +/- SD of 2 independent experiments 339 

performed in triplicates.  340 
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