Serveur Académique Lausannois SERVAL serval.unil.ch

Author Manuscript Faculty of Biology and Medicine Publication

This paper has been peer-reviewed but dos not include the final publisher proof-corrections or journal pagination.

Published in final edited form as:

```
Title: Permissivity of fish cell lines to three Chlamydia-related bacteria:
Waddlia chondrophila, Estrella lausannensis and Parachlamydia
acanthamoebae.
Authors: Kebbi-Beghdadi C, Batista C, Greub G
Journal: FEMS immunology and medical microbiology
Year: 2011 Dec
Volume: 63
Issue: 3
Pages: 339-45
DOI: 10.1111/j.1574-695X.2011.00856.x
```

In the absence of a copyright statement, users should assume that standard copyright protection applies, unless the article contains an explicit statement to the contrary. In case of doubt, contact the journal publisher to verify the copyright status of an article.

Université de Lausanne Faculté de biologie

et de médecine

1	Permissivity of fish cell lines to three Chlamydia-related bacteria :
2	Waddlia chondrophila, Estrella lausannensis and Parachlamydia
3	acanthamoebae.
4 5	Carole Kebbi-Beghdadi ¹ , Claudia Batista ¹ and Gilbert Greub ^{1*} .
6	¹ Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology,
7	University Hospital Center and University of Lausanne, Lausanne, Switzerland, ²
8	
9	Corresponding author:
10	Dr Gilbert Greub
11	Institute of Microbiology
12	Rue du Bugnon 48
13	1011 Lausanne
14	Switzerland
15	Tel: 0041 21 314 4979
16	Fax 0041 21 314 4060
17	e-mail: gilbert.greub@chuv.ch
18	Running title. Permissivity of fish cells to Chlamydia-related bacteria
19	Keywords : Chlamydia-like organisms
20	Epitheliocystis disease
21	Virulence
22	Host range
23	
24	

2	5	
2	6	Abstract
2	.7	Epitheliocystis is an infectious disease affecting gills and skin of various freshwater
2	8	and marine fishes, associated with high mortality and reduced growth of survivors.
2	9	Candidatus Piscichlamydia salmonis and Clavochlamydia salmonicola have recently
3	0	been identified as etiologic agents of epitheliocystis in Atlantic Salmon. In addition,
3	1	several other members of the Chlamydiales order have been identified in other fish
3	2	species.
3	3	To clarify the pathogenicity of Chlamydia-like organisms towards fishes, we
3	4	investigated the permissivity of two fish cell lines, EPC175 (Fathead Minnow) and
3	5	RTG-2 (Rainbow Trout) to three strict Chlamydia-related bacteria: Waddlia
3	6	chondrophila, Parachlamydia acanthamoebae and Estrella lausannensis.
3	7	Quantitative PCR and immunofluorescence demonstrated that Waddlia chondrophila
3	8	and, to a lesser extent, Estrella lausannensis were able to replicate in the two cell
3	9	lines tested. W. chondrophila multiplied rapidly in its host cell and a strong cytopathic
4	0	effect was observed. During E. lausannensis infection, we observed a limited
4	1	replication of the bacteria not followed by host cell lysis. Very limited replication of
4	2	Parachlamydia acanthamoebae was observed in both cell lines tested.
4	3	Given its high infectivity and cytopathic effect towards fish cell lines, W. chondrophila
4	4	represents the most interesting Chlamydia-related bacteria to be used to develop an
4	5	in vivo model of epitheliocystis disease in fishes.
4	6	

Page 3 of 23

47 Introduction

Epitheliocystis is a common infection in many fish species affecting both gill and skin epithelium and characterized by the presence of hypertrophied cells containing granular inclusions. It has been described in over 50 species of fishes from marine as well as freshwater environment and both in cultured and wild fishes, its prevalence being however greater in cultured fishes (Nowak & LaPatra, 2006). The mortality associated with this disease ranges from 4% to 100% and occurs mainly in the early life stages of cultured fishes (Nowak & LaPatra, 2006). Based on ultrastructural observations and antigenic evidence, the causative agent of epitheliocystis was thought to be a member of the Chlamydiales order, which comprises gram-negative bacteria exhibiting a strict intracellular life cycle and sharing a common biphasic developmental cycle including an infectious, metabolically inactive elementary body (EB) that differentiates into a metabolically active reticulate body (RB), dividing by binary fission (Moulder, 1991, Groff, et al., 1996). Draghi et al. reported in 2004 the first identification by molecular techniques (amplification of 16S ribosomal RNA) of the agent of epitheliocystis in Atlantic salmon (Salmo salar) (Draghi, et al., 2004). Their phylogenetic analysis showed that this bacteria, named "Candidatus Piscichlamydia salmonis", branched as a new family-level lineage in the *Chlamydiales* order, an order that includes 6 other family-level lineages: the Chlamydiaceae, Parachlamydiaceae, Waddliaceae, Simkaniaceae, Criblamydiaceae and Rhabdochlamydiaceae (Greub, 2009, Greub, 2010). More recently, the same authors also identified Candidatus Piscichlamydia salmonis in Arctic charr (Salvelinus alpinus) (Draghi, et al., 2010). In the last 5 years, based on partial 16S rRNA gene sequences, the epitheliocystis agents of several fish species have been identified as belonging to the *Chlamydiales* order but being

72	phylogenetically distinct (Meijer, et al., 2006, Draghi, et al., 2007, Karlsen, et al.,
73	2008, Mitchell, et al., 2010, Polkinghorne, et al., 2010). These results suggest that
74	the causative agent of epitheliocystis is a group of intracellular bacteria that are
75	genetically diverse from each other and spread throughout the Chlamydiales order.
76	Bacteria belonging to this order have been found to infect a wide range of terrestrial
77	animals including mammals, marsupials, reptiles and insects (reviewed in (Horn,
78	2008) and several of them, particularly those belonging to the Chlamydiaceae family,
79	are well-known human and animal pathogens (Everett, 2000, Hahn, et al., 2002,
80	Baud, et al., 2008). In addition, some members of the Parachlamydiaceae,
81	Simkaniaceae and Waddliaceae families are currently also considered as possible
82	pathogenic bacteria for humans and animals (Greub & Raoult, 2002a, Dilbeck-
83	Robertson, et al., 2003, Friedman, et al., 2006, Baud, et al., 2007, Borel, et al., 2007,
84	Baud, et al., 2009, Goy, et al., 2009, Deuchande, et al., 2010, Baud, et al., 2011).
85	In order to further study the pathogenesis of the Chlamydia-related bacteria involved
86	in epitheliocystis, it would be valuable to establish experimental in vitro and in vivo
87	fish models of infection. For this purpose and since none of the epitheliocystis agents
88	identified so far could be isolated from its fish host and cultivated in vitro (Meijer, et
89	al., 2006), we chose three Chlamydia-related bacteria, representatives of the
90	Waddliaceae, Criblamydiaceae and Parachlamydiaceae families, to define their
91	ability to enter and multiply in two permanent fish cell lines. More precisely, we
92	studied the permissivity of EPC175 (epithelial cells derived from skin of Fathead
93	Minnow) and RTG-2 (fibroblast cells derived from gonad of Rainbow Trout) towards
94	W. chondrophila (Waddliaceae family), E. lausannensis (Criblamydiaceae family) and
95	P. acanthamoebae (Parachlamydiaceae family) using specific quantitative PCRs

ScholarOne Support 1-434/964-4100

96	developed in our group (Casson, et al., 2008, Goy, et al., 2009, Lienard, et al., 2011)
97	and in-house polyclonal antibodies.
98	
99	Material and methods
100	Cell culture and bacterial strains
101	Epithelioma papulosum cyprini cells (EPC-175) originally form the common carp
102	(Fijan, et al., 1983) but recently shown to be contaminated with fathead minnow
103	(Pimephales promelas) skin cells (Winton, et al., 2010) and rainbow trout
104	(Oncorhynchus mykiss) gonad cells (RTG-2) (Wolf & Quimby, 1962) were obtained
105	from Prof. H. Segner (Bern, Switzerland) and routinely maintained at 25°C in minimal
106	essential medium (MEM; Gibco Invitrogen, Basel Switzerland) supplemented with
107	10% foetal calf serum (Biochrom, Berlin, Germany), 1% non essential amino acids
108	(Biochrom) and 1% Hepes (BioConcept, Allschwil, Switzerland).
109	W. chondrophila strain WSU 86-1044 (ATCC VR-1470), E. lausannensis strain CRIB
110	30 and <i>P. acanthamoebae</i> strain Hall's coccus were grown at 32°C within
111	Acanthamoeba castellanii strain ATCC 30010 in 25 cm ² cell culture flasks (Corning,
112	New York, USA) with 10 ml of peptone-yeast extract-glucose broth as described
113	elsewhere (Greub & Raoult, 2002b). After 5 days, cultures were harvested and
114	filtered through a 5 μ m filter (Millipore, Carrigtwohill, Ireland) to eliminate trophozoites
115	and cysts. Bacteria recovered from the flow-through were diluted in MEM (W.
116	chondrophila 1/1000, E. lausannensis 1/300, P. acanthamoebae 1/150) and used to
117	infect cells.
118	

119 Infection procedure

The day before infection, fish cells were harvested from Corning culture flasks with 0.25% trypsin (Sigma), washed with fresh medium and seeded at 0.5x10⁶ cells per well in 24-wells microplates (Corning). Cells were infected with living or heat-inactivated (1 hour at 95°C) bacteria diluted in MEM. The dilutions used (see above) represent an MOI of 0.1-1 (MOI was estimated by counting under an epifluorescent microscope (see below) the number of bacteria and the number of cells and by dividing the first number by the second). Plates were then centrifuged at 1790 x g for 10 min at room temperature. After 15 min of incubation at 25°C, cells were washed with fresh medium to remove non-internalized bacteria and were then incubated for different periods of time at 25°C.

131 Confocal microscopy

At different time points, infected cells cultivated on glass coverslips were fixed with ice-cold methanol for 5 min, washed 3 times with PBS and then blocked and permeabilized in block solution (PBS, 0.1% saponin, 0.04% NaN3, 10% FCS) at 4°C. Coverslips were incubated 1 hour at room temperature with in-house polyclonal rabbit anti-W. chondrophila (dilution 1/1000), rabbit anti-P. acanthamoebae (dilution 1/200) or mouse anti-E. lausannensis (dilution 1/1000) antibodies diluted in PBS, 0.1% saponin, 1% BSA. After 3 washings in PBS 0.1% saponin, coverslips were again incubated 1 hour at room temperature with a 1/1000 dilution of AlexaFluor 488-conjugated donkey anti-rabbit IgG or goat anti-mouse IgG (Invitrogen, Basel, Switzerland), a 1/10 dilution of Concanavalin A-Texas Red conjugate (Invitrogen, Basel, Switzerland) and 150 ng/ml DAPI (dilactate, Molecular Probes, Invitrogen, Basel, Switzerland) in PBS 0.1% saponin, 1% BSA. After washing twice with PBS

0.1% saponin, once with PBS and once with deionised water, the coverslips were
mounted onto glass slides using Mowiol (Sigma-Aldrich, Buchs, Switzerland). Cells
were observed under an epifluorescent microscope (Axioplan 2, Zeiss, Feldbach,

147 Switzerland) and a confocal microscope (AxioPlan 2 LSM 510, Zeiss).

Electron microscopy

150 RTG-2 cells were infected with *W. chondrophila* diluted 1/500, as described above in

151 25 cm² flasks and harvested 48 hours post-infection. Cells were trypsinized,

152 centrifuged 10 min at 1'500 rpm, washed once in PBS and fixed overnight in 4%

153 glutaraldehyde (Fluka Biochemika, Buchs, Switzerland) at 4°C. After one more

154 washing step with PBS, cells were prepared as described previously (Casson, et al.,

155 2006). Thin sections on grids were examined with a transmission electron

156 microscope Philips CM 100 (Philips, Eindhoven, The Netherlands).

Quantitative PCR

At different time points after infection, cells were harvested in 1 ml medium. Genomic DNA was extracted from 100 μl of the above harvested cells using the Wizard SV Genomic DNA Purification System (Promega, Madison, USA) and eluted from the column in 250 μl volumes, according to the manufacturer's instructions. Quantitative PCR was performed using iTaq supermix with ROX (BioRad) and 200 nM of forward primer (WadF4 5'-GGCCCTTGGGTCGTAAAGTTCT-3'; EstF 5'-ACACGTGCTACAATGGCCGGT-3'; PacF2 5'-GGATGAGGCATGCAAGTCGAACGAA-3'), 200 nM of reverse primer (WadR4 5'-CGGAGTTAGCCGGTGCTTCT-3'; EstR 5'-CCGGGAACGTATTCACGGCGTT-3'; PacR2 5'-AGGTCTTGCGATCCCCCACTTTGA-3'), 100 nM of probe (WadS2 5'-FAM-

FEMS Immunology and Medical Microbiology

C<u>A</u>TGGGAA<u>C</u>AAGAGAAG<u>GAT</u>g-BHQ1-3';

158 EstS 5'-FAM-CAGCCAACGTGAGGG-BHQ1-3'; PacS2 5'-FAM-

159 CGGGCAACCGTTTAGTGGCGGAAGGG-BHQ1-3') and 5 µl of DNA sample

160 (Casson, et al., 2008, Goy, et al., 2009, Lienard, et al., 2011). Cycling conditions

were 95°C, 3 min followed by 40 cycles of 95°C, 15 sec; 60°C,1 min. Amplification

and detection of PCR products were performed with StepOne Plus Real-time PCR

163 System (Applied Biosystems).

164 Cell viability

Cell viability was determined by a Trypan Blue exclusion assay at 0h, 48h, 72h and
144 h post infection. Ten µl of cell suspension were mixed with an equal volume of
Trypan blue (Gibco, Grand Island, NY) and stained 5 min at room temperature. Cells
were counted in KOVA cell chamber system (Hycor, California, USA) and the number
of living (unstained) and dead (stained) cells was determined in duplicate.

Results

EPC-175 and RTG-2 cells were infected with W. chondrophila, E. lausannensis or P. acanthamoebae and bacterial growth was monitored at different time points after infection. The number of bacterial genomic DNA copies was measured with specific quantitative PCRs (qPCRs) that had been developed in our laboratory (Casson, et al., 2008, Goy, et al., 2009, Lienard, et al., 2011). Bacterial replication was simultaneously assessed by immunofluorescence and confocal microscopy using in-house polyclonal antibodies. For the three Chlamydia-related bacteria tested, the growth kinetics were very similar in EPC-175 and in RTG-2 cells. The level of bacterial replication, however, varied considerably depending on the organism

ScholarOne Support 1-434/964-4100

181	analysed. As expected, no multiplication of heat-inactivated bacteria was observed
182	for either the organism or the cell line tested.
183	
184	Growth kinetic of W. chondrophila
185	Results obtained by qPCR revealed a rapid multiplication phase, lasting about 48
186	hours, during which the number of bacteria increased by more than 3 logs (Fig. 1,
187	panel a). Furthermore, confocal microscopy observations indicated that after the first
188	round of replication, host cells were lysed and elementary bodies (EBs) were
189	released in the medium triggering a new infection cycle (Fig. 2A). Six days post
190	infection, most of the host cells were lysed and no more bacterial replication could be
191	detected by qPCR.
192	Electron micrographs presented in Fig. 2B confirmed that 48 hours post infection,
193	infected cells are filled with very large vacuoles containing dividing reticulate bodies
194	(RBs) as well as re-differentiated elementary bodies (EBs) ready to be released in
195	the extracellular medium.
196	
197	Growth kinetic of <i>E. lausannensis</i>
198	The growth kinetic of <i>E. lausannensis</i> revealed a limited multiplication phase lasting
199	about 48 hours during which the number of genomic DNA copies increased by
200	approximately 1 log (Fig. 1, panel b). After 48 hours, no more bacterial replication
201	could be detected by qPCR and the number of genomic DNA copies remained
202	constant. Furthermore, as revealed by direct observation of the infected cells under

- 203 confocal microscopy (Fig. 3) there was no lytic effect of the bacteria on the host cells
- and only little re-infection of new host cells. This absence of cytopathic effect was

confirmed by measuring the cell viability in a Trypan blue assay and demonstrating

206	that percentage of viable cells only slightly decreased from 100% to 90% during the
207	course of infection, a decrease that was also observed with heat-inactivated bacteria
208	and which could be due to a lack of nutrients, since the culture medium was not
209	replaced in these experiments.
210	
211	Growth kinetic of <i>P. acanthamoebae</i>
212	The <i>P. acanthamoebae</i> growth curve assessed by quantitative PCR (Fig. 1, panel c)
213	indicated a slight increase in the number of bacterial DNA copies (<1 log) in both cell
214	lines. Moreover, during the first 48 hours after infection, we could observe by
215	confocal microscopy inclusions containing one reticulate body or rarely a cluster of
216	these metabolically active forms, suggesting that although replication is very limited,
217	P. acanthamoebae may differentiate from elementary bodies to reticulate bodies after
218	entry in fish cells.
219	
220	Discussion
221	In this work, we demonstrated that two different members of the Chlamydiales order,
222	W. chondrophila and E. lausannensis are able to enter and multiply in EPC-175 and
223	RTG-2, two fish cell lines of different origins. Previous results obtained by our group
224	and others have established that W. chondrophila and E. lausannensis are able to
225	rapidly grow in various mammalian cell lines and strains of amoebae suggesting a
226	broad host range for these two organisms which, in addition, are able to multiply at
227	different temperatures ranging from 20°C to 37°C (Kocan, et al., 1990, Henning, et
228	al., 2002, Goy, et al., 2008, Kebbi-Beghdadi, et al., 2011, Lienard, et al., 2011). The

multiplication of *E. lausannensis* in the two cell lines tested was limited when compared to the exponential growth of W. chondrophila, a restricted replication that could be due to nutrient deficiency or to decreased fitness of the host cells in a system in which the culture medium was not replaced during the course of the experiment. Indeed, as revealed by genome analysis, W. chondrophila possess larger capabilities than E. lausannensis to synthesize de novo nucleotides, amino acids, lipids and co-factors and may therefore be less dependent on its host cell (Bertelli, et al., 2010), Bertelli, et al., unpublished).

P. acanthamoebae was shown to enter and multiply within human lung fibroblasts, pneumocytes and macrophages, but the level of replication was much lower in these cell lines than in amoebae which are their natural hosts (Greub, et al., 2003, Greub, et al., 2003, Greub, et al., 2005, Casson, et al., 2006, Hayashi, et al., 2010, Roger, et al., 2010). In the two fish cell lines used in the present study, P. acanthamoebae was able to enter the host cell and, in some cases, to differentiate from EBs to RBs as indicated by DAPI staining, which revealed the presence of bacteria containing decondensed nucleus, a feature characteristic of RBs (Croxatto & Greub, 2010). In some rare cases, RBs started to replicate and inclusions containing clusters of reticulate bodies could be observed during the first 48 hours post infection. However, at later time points, these replicating bacteria could not be seen, suggesting that the replication cycle had aborted. This very limited replication could explain the slight increase in the number of bacteria detected by qPCR during the first 48 hours following infection. However, minimal differences in the number of genomic DNA copies detected by qPCR could also be due to DNA extraction artifact. Indeed, we observed that DNA yield upon extraction may be lower with EBs than with RBs because of differences in their membrane composition (unpublished results). The

membrane of EBs presents highly disulfide-linked proteins that confer rigidity and
stability to the cell wall and that are reduced during differentiation to RBs (Hatch,
1996, McCoy & Maurelli, 2006).

Various members of the *Chlamydiales* order are causative agents of epitheliocystis, but since the biology of these micro-organisms remains largely unknown, strategies to deal with epitheliocystis are limited to guarantining diseased fishes. In these conditions, it would be of valuable interest to have an *in vivo* fish model of infection by *Chlamydia*-related epitheliocystis agents. The development of a zebrafish model would be of peculiar interest since several genetic approaches, such as random mutagenesis or gene knockout, are available for this model organism and may be used to investigate the host determinants of the disease. In addition, the susceptibility of zebrafish embryos to chlamydial infection could also be explored during larval stages, taking advantage of the sequential staged development of the innate and adaptive immune system in this organism. Finally, such an in vivo model could be used to test the efficiency of preventive or therapeutic measures to control the disease. In the present study, we demonstrated that W. chondrophila is able to enter and very efficiently replicate in two different fish cell lines. This bacteria would thus be a good candidate to infect fishes in vivo and develop an animal model of epitheliocystis. Alternatively, W. chondrophila and E. lausannensis, that both replicate in EPC-175 and RTG-2, could be used in vitro to further study host-pathogen interactions.

Several members of the *Chlamydiaceae* family such as *C. psittaci* or *C. abortus* are
known to cause zoonotic diseases (Longbottom & Coulter, 2003). In addition,
seropositivity for *W. chondrophila*, *P. acanthamoebae* or *C. sequanensis* is
associated with animal contacts which suggests a possible zoonotic potential for

ScholarOne Support 1-434/964-4100

these Chlamydia-related bacteria as well (Baud. et al., 2007, Baud. et al., 2009). Furthermore, the organisms discovered in epitheliocystis of Arctic charr from Virginia (USA) (Draghi, et al., 2007) were partly identical to Chlamydiales previously identified in cat conjunctivitis (von Bomhard, et al., 2003), which seriously raises the question of zoonotic transmission of these epitheliocystis agents. Further investigations are now required to define the possible role of fish species as reservoirs for emerging human or animal pathogens as well as the zoonotic potential of these newly described bacteria.

288 Acknowledgments

This study was supported by the State Secretary for Education and Research, Berne, Switzerland (project no. C09.0039), as part of European Cooperation in the Field of Scientific and Technical Research (COST Action n° 867). We thank S. Aeby, the Electron Microscopy Facility platform of the University of Lausanne and the PFMU at the Medical Faculty of Geneva for assisting with electron microscopy analysis. We also thank the Cellular Imaging Facility platform of the University of Lausanne for confocal microscopy. Gilbert Greub is supported by the Leenards Foundation through a career award entitled "Bourse Leenards pour la relève académique en médecine clinique à Lausanne".

References Baud D, Regan L & Greub G (2008) Emerging role of Chlamydia and Chlamydia-like organisms in adverse pregnancy outcomes. Curr Opin Infect Dis 21: 70-76. Baud D, Kebbi C, Kulling JP & Greub G (2009) Seroprevalence of different Chlamydia-like organisms in an asymptomatic population. Clin Microbiol Infect 15 Suppl 2: 213-215. Baud D, Thomas V, Arafa A, Regan L & Greub G (2007) Waddlia chondrophila, a potential agent of human fetal death. *Emerg Infect Dis* **13**: 1239-1243. Baud D, Goy G, Gerber S, Vial Y, Hohlfeld P & Greub G (2009) Evidence of maternal-fetal transmission of Parachlamydia acanthamoebae. Emerg Infect Dis 15: 120-121. Baud D, Goy G, Osterheld MC, Borel N, Vial Y, Pospischil A & Greub G (2011) Waddlia chondrophila: From Bovine Abortion to Human Miscarriage. Clinical infectious diseases **52**:1469-71. Bertelli C, Collyn F, Croxatto A, et al. (2010) The Waddlia genome: a window into chlamydial biology. PLoS One 5: e10890. Borel N, Ruhl S, Casson N, Kaiser C, Pospischil A & Greub G (2007) Parachlamydia spp. and related Chlamydia-like organisms and bovine abortion. Emerg Infect Dis 13: 1904-1907. Casson N, Medico N, Bille J & Greub G (2006) Parachlamydia acanthamoebae enters and multiplies within pneumocytes and lung fibroblasts. *Microbes Infect* 8: 1294-1300. Casson N, Posfay-Barbe KM, Gervaix A & Greub G (2008) New diagnostic real-time PCR for specific detection of Parachlamydia acanthamoebae DNA in clinical samples. J Clin Microbiol 46: 1491-1493.

ScholarOne Support 1-434/964-4100

1		
2 3 4	324	Croxatto A & Greub G (2010) Early intracellular trafficking of Waddlia chondrophila in
5	325	human macrophages. Microbiology 156: 340-355.
7 8	326	Deuchande R, Gidlow J, Caldow G, et al. (2010) Parachlamydia involvement in
9 10	327	bovine abortions in a beef herd in Scotland. Vet Rec 166: 598-599.
11 12	328	Dilbeck-Robertson P, McAllister MM, Bradway D & Evermann JF (2003) Results of a
13 14	329	new serologic test suggest an association of Waddlia chondrophila with bovine
15 16 17	330	abortion. J Vet Diagn Invest 15: 568-569.
18 19	331	Draghi A, 2nd, Popov VL, Kahl MM, et al. (2004) Characterization of "Candidatus
20 21	332	piscichlamydia salmonis" (order Chlamydiales), a chlamydia-like bacterium
22 23	333	associated with epitheliocystis in farmed Atlantic salmon (Salmo salar). J Clin
24 25 26	334	Microbiol 42 : 5286-5297.
20 27 28	335	Draghi A, 2nd, Bebak J, Popov VL, et al. (2007) Characterization of a Neochlamydia-
29 30	336	like bacterium associated with epitheliocystis in cultured Arctic charr Salvelinus
31 32	337	alpinus. Dis Aquat Organ 76 : 27-38.
33 34 25	338	Draghi A, 2nd, Bebak J, Daniels S, et al. (2010) Identification of 'Candidatus
30 36 37	339	Piscichlamydia salmonis' in Arctic charr Salvelinus alpinus during a survey of charr
38 39	340	production facilities in North America. Dis Aquat Organ 89: 39-49.
40 41	341	Everett KD (2000) Chlamydia and Chlamydiales: more than meets the eye. Vet
42 43	342	<i>Microbiol</i> 75 : 109-126.
44 45	343	Fijan N, Sulimanovic D, Bearzotti M, et al. (1983) Some properties of the epithelioma
40 47 48	344	papulosum cyprini (EPC) cell line from carp Cyprinus carpio. Annales de l'Institut
49 50	345	pasteur/Virologie 134E : 207-220.
51 52	346	Friedman MG, Kahane S, Dvoskin B & Hartley JW (2006) Detection of Simkania
53 54	347	negevensis by culture, PCR, and serology in respiratory tract infection in Cornwall,
55 56 57 58	348	UK. J Clin Pathol 59 : 331-333.

 349 Goy G, Croxatto A & Greub G (2008) *Waddlia chondrophila* enters and multiplies

- within human macrophages. *Microbes Infect* **10**: 556-562.
- 351 Goy G, Croxatto A, Posfay-Barbe KM, Gervaix A & Greub G (2009) Development of
- a real-time PCR for the specific detection of *Waddlia chondrophila* in clinical samples.
- *Eur J Clin Microbiol Infect Dis* **28**: 1483-1486.
- Greub G (2009) The medical importance of *Chlamydiae*. *Clin Microbiol Infect* **15**: 2-3.
- 355 Greub G (2010) International Committee on Systematics of Prokaryotes.
- 356 Subcommittee on the taxonomy of the *Chlamydiae*: minutes of the inaugural closed
- meeting, 21 March 2009, Little Rock, AR, USA. Int J Syst Evol Microbiol 60: 2691-
- **2693**.
- 359 Greub G & Raoult D (2002a) *Parachlamydiaceae*: potential emerging pathogens.
- *Emerg Infect Dis* **8**: 625-630.
- 361 Greub G & Raoult D (2002b) Crescent bodies of Parachlamydia acanthamoeba and
- 362 its life cycle within *Acanthamoeba polyphaga*: an electron micrograph study. *Appl*
- 363 Environ Microbiol **68**: 3076-3084.
- 364 Greub G, La Scola B & Raoult D (2003) Parachlamydia acanthamoeba is
- 365 endosymbiotic or lytic for *Acanthamoeba polyphaga* depending on the incubation
 - 366 temperature. *Ann N Y Acad Sci* **990**: 628-634.
 - 367 Greub G, Mege JL & Raoult D (2003) Parachlamydia acanthamoebae enters and
 - 368 multiplies within human macrophages and induces their apoptosis. *Infect Immun* **71**:
 369 5979-5985.
 - Greub G, Mege JL, Gorvel JP, Raoult D & Meresse S (2005) Intracellular trafficking
 of *Parachlamydia acanthamoebae*. *Cell Microbiol* **7**: 581-589.
 - 372 Groff JM, LaPatra SE, Munn RJ, Anderson ML & Osburn BI (1996) Epitheliocystis
 - 373 infection in cultured white sturgeon (Acipenser transmontanus): antigenic and

Page 17 of 23		FEMS Immunology and Medical Microbiology		
1		17		
2 3	374	ultrastructural similarities of the causative agent to the chlamydiae. Journal of		
4 5 6	375	veterinary diagnostic investigation : official publication of the American Association of		
7 8	376	Veterinary Laboratory Diagnosticians, Inc 8: 172-180.		
9 10	377	Hahn DL, Azenabor AA, Beatty WL & Byrne GI (2002) Chlamydia pneumoniae as a		
11 12	378	respiratory pathogen. Front Biosci 7: e66-76.		
13 14	379	Hatch TP (1996) Disulfide cross-linked envelope proteins: the functional equivalent of		
15 16 17	380	peptidoglycan in chlamydiae? J Bacteriol 178: 1-5.		
18 19	381	Hayashi Y, Nakamura S, Matsuo J, et al. (2010) Host range of obligate intracellular		
20 21	382	bacterium Parachlamydia acanthamoebae. Microbiology and immunology 54: 707-		
22 23	383	713.		
24 25 26	384	Henning K, Schares G, Granzow H, et al. (2002) Neospora caninum and Waddlia		
20 27 28	385	chondrophila strain 2032/99 in a septic stillborn calf. Vet Microbiol 85: 285-292.		
29 30	386	Horn M (2008) Chlamydiae as symbionts in eukaryotes. Annu Rev Microbiol 62: 113-		
31 32	387	131.		
33 34	388	Karlsen M, Nylund A, Watanabe K, Helvik JV, Nylund S & Plarre H (2008)		
35 36 37	389	Characterization of 'Candidatus Clavochlamydia salmonicola': an intracellular		
38 39	390	bacterium infecting salmonid fish. Environ Microbiol 10: 208-218.		
40 41	391	Kebbi-Beghdadi C, Cisse O & Greub G (2011) Permissivity of Vero cells, human		
42 43	392	pneumocytes and human endometrial cells to Waddlia chondrophila. Microbes and		
44 45 46	393	infection / Institut Pasteur.		
40 47 48	394	Kocan KM, Crawford TB, Dilbeck PM, Evermann JF & McGuire TC (1990)		
49 50	395	Development of a rickettsia isolated from an aborted bovine fetus. J Bacteriol 172:		
51 52	396	5949-5955.		
53 54	397	Lienard J, Croxatto A, Prodhom G & Greub G (2011) Estrella lausannensis, a new		
55 56 57 58	398	star in the Chlamydiales order. Microbes and infection, in press.		
59 60				
		ScholarOne Support 1-434/964-4100		

		18
399	Longbottom D & Coulter LJ (2003) Animal chlamydioses and zoonotic implications.	
400	Journal of comparative pathology 128 : 217-244.	
101	McCoy AJ & Maurelli AT (2006) Building the invisible wall: updating the chlamydial	
02	peptidoglycan anomaly. Trends Microbiol 14: 70-77.	
03	Meijer A, Roholl PJ, Ossewaarde JM, Jones B & Nowak BF (2006) Molecular	
)4	evidence for association of chlamydiales bacteria with epitheliocystis in leafy	
)5	seadragon (Phycodurus eques), silver perch (Bidyanus bidyanus), and barramundi	
06	(Lates calcarifer). Appl Environ Microbiol 72 : 284-290.	
07	Mitchell SO, Steinum T, Rodger H, Holland C, Falk K & Colquhoun DJ (2010)	
08	Epitheliocystis in Atlantic salmon, Salmo salar L., farmed in fresh water in Ireland is	
09	associated with 'Candidatus Clavochlamydia salmonicola' infection. J Fish Dis 33:	
10	665-673.	
11	Moulder JW (1991) Interaction of chlamydiae and host cells in vitro. Microbiol Rev 5	5 :
12	143-190.	
13	Nowak BF & LaPatra SE (2006) Epitheliocystis in fish. <i>J Fish Dis</i> 29: 573-588.	
.4	Polkinghorne A, Schmidt-Posthaus H, Meijer A, Lehner A & Vaughan L (2010) Nove	ł
15	Chlamydiales associated with epitheliocystis in a leopard shark Triakis semifasciata	
16	Dis Aquat Organ 91 : 75-81.	
17	Roger T, Casson N, Croxatto A, et al. (2010) Role of MyD88 and Toll-Like Receptor	
18	(TLR) 2 and TLR4 in the Sensing of Parachlamydia acanthamoebae. Infect Immun.	
19	von Bomhard W, Polkinghorne A, Lu ZH, et al. (2003) Detection of novel chlamydiae	Э
20	in cats with ocular disease. American journal of veterinary research 64: 1421-1428.	
21	Winton J, Batts W, deKinkelin P, LeBerre M, Bremont M & Fijan N (2010) Current	
22	lineages of the epithelioma papulosum cyprini (EPC) cell line are contaminated with	
23	fathead minnow, Pimephales promelas, cells. Journal of fish diseases 33: 701-704.	

4	\sim
	u.
-	J

424	Wolf K & Quimby MC (1962) Established eurythermic line of fish cells in vitro.
425	<i>Science</i> 135 : 1065-1066.
426	
427	Figure legends
428	Fig. 1 Bacterial growth within fish cells
429	Replication of Waddlia chondrophila (panel a), Estrella lausannensis (panel b) and
430	Parachlamydia acanthamoebae (panel c) in fish cell lines. Bacterial replication is
431	measured by quantitative PCR over 144 hours following infection of EPC-175 (black
432	triangles) and RTG-2 cells (grey circles) either with living bacteria (plain lines) or with
433	heat-inactivated bacteria (dashed lines). The results are the mean +/- SEM of
434	duplicates of one representative experiment.
435	
436	Fig. 2 <i>W. chondrophila</i> replication within RTG-2 cells.
437	A Growth of W. chondrophila in RTG-2 cells assessed by immunofluorescence and
438	confocal microscopy at different time points following infection. Bacteria were stained
439	green with a polyclonal rabbit anti-Waddlia antibody and fish cells were stained red
440	with Texas Red-conjugated Concanavalin A.
441	B Electron micrographs of RTG-2 cells infected with W. chondrophila 48 hours post-
442	infection showing a very large inclusion containing RBs, some of them dividing by
443	binary fission (white arrows) and EBs.
444	
445	Fig. 3 <i>E. lausannensis</i> replication within RTG-2 cells.

446	Growth of E. lausannensis in RTG-2 cells revealed by confocal microscopy
-----	--

- 447 observation of cells at different time points after infection. Bacteria (green) were
- stained with a polyclonal mouse anti-Estrella antibody and fish cells (red) were
- stained with Texas Red-conjugated Concanavalin A.

287x419mm (300 x 300 DPI)

Figure 1

в

Figure 2

W. chondrophila replication within RTG-2 cells.

A Growth of W. chondrophila in RTG-2 cells assessed by immunofluorescence and confocal microscopy at different time points following infection. Bacteria were stained green with a polyclonal rabbit anti-Waddlia antibody and fish cells were stained red with Texas Red-conjugated Concanavalin A.
 B Electron micrographs of RTG-2 cells infected with W. chondrophila 48 hours post-infection showing a very large inclusion containing RBs, some of them dividing by binary fission (white arrows) and EBs.

274x296mm (300 x 300 DPI)

Figure 3

E. lausannensis replication within RTG-2 cells. Growth of E. lausannensis in RTG-2 cells revealed by confocal microscopy observation of cells at different time points after infection. Bacteria (green) were stained with a polyclonal mouse anti-Estrella antibody and fish cells (red) were stained with Texas Red-conjugated Concanavalin A.

190x284mm (300 x 300 DPI)