53 research outputs found

    The variability of the black hole image in M87 at the dynamical timescale

    Get PDF
    The black hole images obtained with the Event Horizon Telescope (EHT) are expected to be variable at the dynamical timescale near their horizons. For the black hole at the center of the M87 galaxy, this timescale (5–61 days) is comparable to the 6 day extent of the 2017 EHT observations. Closure phases along baseline triangles are robust interferometric observables that are sensitive to the expected structural changes of the images but are free of station-based atmospheric and instrumental errors. We explored the day-to-day variability in closure-phase measurements on all six linearly independent nontrivial baseline triangles that can be formed from the 2017 observations. We showed that three triangles exhibit very low day-to-day variability, with a dispersion of ∼3°–5°. The only triangles that exhibit substantially higher variability (∼90°–180°) are the ones with baselines that cross the visibility amplitude minima on the u–v plane, as expected from theoretical modeling. We used two sets of general relativistic magnetohydrodynamic simulations to explore the dependence of the predicted variability on various black hole and accretion-flow parameters. We found that changing the magnetic field configuration, electron temperature model, or black hole spin has a marginal effect on the model consistency with the observed level of variability. On the other hand, the most discriminating image characteristic of models is the fractional width of the bright ring of emission. Models that best reproduce the observed small level of variability are characterized by thin ring-like images with structures dominated by gravitational lensing effects and thus least affected by turbulence in the accreting plasmas.https://iopscience.iop.org/article/10.3847/1538-4357/ac332e/pdfPublished versio

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Planarians SET New Paths for Innate Immune Memory

    No full text

    Trained immunity and diabetic vascular disease

    No full text
    Trained immunity is a recently described phenomenon whereby innate immune cells undergo functional reprogramming in response to microbial products, vaccines, or other stimuli, leading them to mount a sensitized nonspecific response to subsequent stimulation. While it is essential for the host response to pathogens, many diseases are the product of excessive or chronic inflammation. Atherosclerosis is a disease characterized by chronic low-grade inflammation of the arterial wall leading to plaque formation, where macrophages are the most abundant cell regulating plaque progression and stability. Recent studies have revealed a role for endogenous compounds related to atherosclerosis in the induction of trained immunity, which can enhance the expression of genes implicated in atherosclerosis and associated cardiovascular disease. Accelerated atherosclerosis remains the principal cause of morbidity and premature mortality in patients with diabetes, and the burden of vascular complications is greatly enhanced by prior periods of inadequate control of blood glucose. Recent findings suggest that long-term changes in bone marrow myeloid progenitors, similar to those induced by microbial products or high cholesterol diets in mice, may help to explain the chronic inflammatory state driving atherosclerosis and cardiovascular risk that exists for patients with diabetes despite improved metabolic control. From an immunometabolic perspective, we speculate that changes supporting the trained macrophage phenotype, such as up-regulation of glycolysis, indicate that a high glucose environment could enhance the pro-inflammatory consequences of trained immunity thereby contributing to the accelerated progression of atherosclerosis in patients with diabetes

    Getting to the marrow of trained immunity

    No full text
    Contains fulltext : 196392.pdf (publisher's version ) (Closed access

    Epigenetics in diabetic nephropathy, immunity and metabolism

    Get PDF
    When it comes to the epigenome, there is a fine line between clarity and confusion-walk that line and you will discover another fascinating level of transcription control. With the genetic code representing the cornerstone of rules for information that is encoded to proteins somewhere above the genome level there is a set of rules by which chemical information is also read. These epigenetic modifications show a different side of the genetic code that is diverse and regulated, hence modifying genetic transcription transiently, ranging from short- to long-term alterations. While this complexity brings exquisite control it also poses a formidable challenge to efforts to decode mechanisms underlying complex disease. Recent technological and computational advances have improved unbiased acquisition of epigenomic patterns to improve our understanding of the complex chromatin landscape. Key to resolving distinct chromatin signatures of diabetic complications is the identification of the true physiological targets of regulatory proteins, such as reader proteins that recognise, writer proteins that deposit and eraser proteins that remove specific chemical moieties. But how might a diverse group of proteins regulate the diabetic landscape from an epigenomic perspective? Drawing from an ever-expanding compendium of experimental and clinical studies, this review details the current state-of-play and provides a perspective of chromatin-dependent mechanisms implicated in diabetic complications, with a special focus on diabetic nephropathy. We hypothesise a codified signature of the diabetic epigenome and provide examples of prime candidates for chemical modification. As for the pharmacological control of epigenetic marks, we explore future strategies to expedite and refine the search for clinically relevant discoveries. We also consider the challenges associated with therapeutic strategies targeting epigenetic pathways

    Monocyte and macrophage immunometabolism in atherosclerosis

    Get PDF
    Atherosclerosis is characterized by chronic low grade inflammation of arteries that results in the development of lipid dense plaques. Chronic inflammation induced by Western-type diet is associated with the risk of developing atherosclerosis, and new insights shed light on the importance of metabolic and functional reprogramming in monocytes and macrophages for progression of atherosclerosis. This review aims to provide an overview of our current understanding into how the metabolic reprogramming of glucose, cholesterol, fatty acid, and amino acid metabolism in macrophages contributes to inflammation during atherosclerosis. Recent insights suggest that transcriptional and epigenetic adaptation within innate immune cells (termed trained immunity) play an important role in the pathogenesis of atherosclerosis. We propose that metabolic changes induced by pro-atherogenic lipoproteins partly mediate these changes in trained macrophages. Finally, we discuss the possibility of manipulating cellular metabolism of immune cells for targeted therapeutic intervention against atherosclerosis

    HDAC inhibitors modulate innate immune responses to micro-organisms relevant to chronic mucocutaneous candidiasis

    No full text
    Contains fulltext : 197174.pdf (publisher's version ) (Closed access
    • …
    corecore