3,085 research outputs found

    Herschel evidence for disk flattening or gas depletion in transitional disks

    Get PDF
    Transitional disks are protoplanetary disks characterized by reduced near- and mid-infrared emission with respect to full disks. This characteristic spectral energy distribution indicates the presence of an optically thin inner cavity within the dust disk believed to mark the disappearance of the primordial massive disk. We present new Herschel Space Observatory PACS spectra of [OI] 63 micron for 21 transitional disks. Our survey complements the larger Herschel GASPS program "Gas in Protoplanetary Systems" (Dent et al. 2013) by quadrupling the number of transitional disks observed with PACS at this wavelength. [OI] 63 micron traces material in the outer regions of the disk, beyond the inner cavity of most transitional disks. We find that transitional disks have [OI] 63 micron line luminosities two times fainter than their full disk counterparts. We self consistently determine various stellar properties (e.g. bolometric luminosity, FUV excess, etc.) and disk properties (e.g. disk dust mass, etc.) that could influence the [OI] 63 micron line luminosity and we find no correlations that can explain the lower [OI] 63 micron line luminosities in transitional disks. Using a grid of thermo-chemical protoplanetary disk models, we conclude that either transitional disks are less flared than full disks or they possess lower gas-to-dust ratios due to a depletion of gas mass. This result suggests that transitional disks are more evolved than their full disk counterparts, possibly even at large radii.Comment: Accepted for publication in ApJ; 52 pages, 16 figures, 8 table

    Are the distributions of Fast Radio Burst properties consistent with a cosmological population?

    Get PDF
    High time resolution radio surveys over the last few years have discovered a population of millisecond-duration transient bursts called Fast Radio Bursts (FRBs), which remain of unknown origin. FRBs exhibit dispersion consistent with propagation through a cold plasma and dispersion measures indicative of an origin at cosmological distances. In this paper we perform Monte Carlo simulations of a cosmological population of FRBs, based on assumptions consistent with observations of their energy distribution, their spatial density as a function of redshift and the properties of the interstellar and intergalactic media. We examine whether the dispersion measures, fluences, inferred redshifts, signal-to-noises and effective widths of known FRBs are consistent with a cosmological population. Statistical analyses indicate that at least 50 events at Parkes are required to distinguish between a constant co-moving FRB density, and a FRB density that evolves with redshift like the cosmological star formation rate density.Comment: 11 pages, 7 figures, 3 table

    Relativistic spin precession in the binary PSR J1141-6545

    Full text link
    PSR J1141-6545 is a precessing binary pulsar that has the rare potential to reveal the two-dimensional structure of a non-recycled pulsar emission cone. It has undergone 25deg\sim 25 \deg of relativistic spin precession in the 18\sim18 years since its discovery. In this paper, we present a detailed Bayesian analysis of the precessional evolution of the width of the total intensity profile, to understand the changes to the line-of-sight impact angle (β\beta) of the pulsar using four different physically motivated prior distribution models. Although we cannot statistically differentiate between the models with confidence, the temporal evolution of the linear and circular polarisations strongly argue that our line-of-sight crossed the magnetic pole around MJD 54000 and that only two models remain viable. For both these models, it appears likely that the pulsar will precess out of our line-of-sight in the next 353-5 years, assuming a simple beam geometry. Marginalising over β\beta suggests that the pulsar is a near-orthogonal rotator and provides the first polarization-independent estimate of the scale factor (A\mathbb{A}) that relates the pulsar beam opening angle (ρ\rho) to its rotational period (PP) as ρ=AP0.5\rho = \mathbb{A}P^{-0.5} : we find it to be >6 deg s0.5> 6 \rm~deg~s^{0.5} at 1.4 GHz with 99\% confidence. If all pulsars emit from opposite poles of a dipolar magnetic field with comparable brightness, we might expect to see evidence of an interpulse arising in PSR J1141-6545, unless the emission is patchy.Comment: Accepted for publication in Astrophysical Journal Letter

    Systematic performance of the ASKAP Fast Radio Burst search algorithm

    Full text link
    Detecting fast radio bursts (FRBs) requires software pipelines to search for dispersed single pulses of emission in radio telescope data. In order to enable an unbiased estimation of the underlying FRB population, it is important to understand the algorithm efficiency with respect to the search parameter space and thus the survey completeness. The Fast Real-time Engine for Dedispersing Amplitudes (FREDDA) search pipeline is a single pulse detection pipeline designed to identify radio pulses over a large range of dispersion measures (DM) with low latency. It is used on the Australian Square Kilometre Array Pathfinder (ASKAP) for the Commensal Real-time ASKAP Fast Transients (CRAFT) project . We utilise simulated single pulses in the low- and high-frequency observation bands of ASKAP to analyse the performance of the pipeline and infer the underlying FRB population. The simulation explores the Signal-to-Noise Ratio (S/N) recovery as a function of DM and the temporal duration of FRB pulses in comparison to injected values. The effects of intra-channel broadening caused by dispersion are also carefully studied in this work using control datasets. Our results show that for Gaussian-like single pulses, >85%> 85 \% of the injected signal is recovered by pipelines such as FREDDA at DM < 3000 pc cm3\mathrm{pc\ cm^{-3}} using standard boxcar filters compared to an ideal incoherent dedispersion match filter. Further calculations with sensitivity implies at least 10%\sim 10\% of FRBs in a Euclidean universe at target sensitivity will be missed by FREDDA and HEIMDALL, another common pipeline, in ideal radio environments at 1.1 GHz.Comment: 11 pages 13 figures. Accepted for MNRAS; Data and simulation code available onlin

    Intensity of Vascular Streak Dieback in Different Cocoa Clones and Various Agro-climatic Conditions

    Get PDF
    Vascular streak dieback (VSD) is one of the main diseases on cocoa. This disease can produce a heavy damage in susceptible plants. Agro-climatic condition influences the VSD disease severity level. A study on the relationship between agro-climatic condition and VSD disease severity was conducted in eight locations which were selected based on difference in agro-climatic conditions including altitude, rainfall, number of wet, and dry months. Randomized complete block design was used consisting of eight agro-climatic conditions as treatments which consisted of 200 trees samples, and scored for VSD intensity. A study was also conducted on the response of cocoa clones with different level of resistance at different altitude at Kendeng Lembu, Jatirono, Sungai Lembu, Banjarsari, and Sumber Asin Plantations. A split plot design was applied consisting of two factors. The first factor was location including Pager Gunung (highland) and Besaran (lowland). The second factor was clone resistance with two levels: PA 191 (resistant) and BL 703 (susceptible). VSD scores and stomatal characteristics (stomata number, stomata diameter, and stomata aperture) were determined. The results of experiment showed that VSD scoring differed significantly between the eight agro-climatic conditions. The highest VSD score occurred in the lowland (Gereng Rejo, Banjarsari Plantation, 38 m asl.), where the average annual rainfall was 2161 mm, with five dry months. Cocoa trees in Sumber Asin (580 m asl.), with the average annual rainfall of 2302 mm and 8.5 wet months/3.5 dry months were mostly free of VSD disease. Altitude was positively correlated with rainfall, and negatively correlated with VSD severity. Number of wet months was negatively correlated with VSD severity. Conversely, number of dry months was positively correlated with VSD. The result indicated that genotype, environment, or their interaction did not significantly affect number and aperture of stomata. Although stomatal diameter was significantly affected by environment, genotypes or their interaction with environment did not influence this character

    The first interferometric detections of Fast Radio Bursts

    Get PDF
    We present the first interferometric detections of Fast Radio Bursts (FRBs), an enigmatic new class of astrophysical transient. In a 180-day survey of the Southern sky we discovered 3 FRBs at 843 MHz with the UTMOST array, as part of commissioning science during a major ongoing upgrade. The wide field of view of UTMOST (9\approx 9 deg2^{2}) is well suited to FRB searches. The primary beam is covered by 352 partially overlapping fan-beams, each of which is searched for FRBs in real time with pulse widths in the range 0.655 to 42 ms, and dispersion measures \leq2000 pc cm3^{-3}. Detections of FRBs with the UTMOST array places a lower limit on their distances of 104\approx 10^4 km (limit of the telescope near-field) supporting the case for an astronomical origin. Repeating FRBs at UTMOST or an FRB detected simultaneously with the Parkes radio telescope and UTMOST, would allow a few arcsec localisation, thereby providing an excellent means of identifying FRB host galaxies, if present. Up to 100 hours of follow-up for each FRB has been carried out with the UTMOST, with no repeating bursts seen. From the detected position, we present 3σ\sigma error ellipses of 15 arcsec x 8.4 deg on the sky for the point of origin for the FRBs. We estimate an all-sky FRB rate at 843 MHz above a fluence Flim\cal F_\mathrm{lim} of 11 Jy ms of 78\sim 78 events sky1^{-1} d1^{-1} at the 95 percent confidence level. The measured rate of FRBs at 843 MHz is of order two times higher than we had expected, scaling from the FRB rate at the Parkes radio telescope, assuming that FRBs have a flat spectral index and a uniform distribution in Euclidean space. We examine how this can be explained by FRBs having a steeper spectral index and/or a flatter logNN-logF\mathcal{F} distribution than expected for a Euclidean Universe.Comment: 13 pages, 8 figures, 2 table

    The UTMOST pulsar timing programme I: overview and first results

    Full text link
    We present an overview and the first results from a large-scale pulsar timing programme that is part of the UTMOST project at the refurbished Molonglo Observatory Synthesis Radio Telescope (MOST) near Canberra, Australia. We currently observe more than 400 mainly bright southern radio pulsars with up to daily cadences. For 205 (8 in binaries, 4 millisecond pulsars) we publish updated timing models, together with their flux densities, flux density variability, and pulse widths at 843 MHz, derived from observations spanning between 1.4 and 3 yr. In comparison with the ATNF pulsar catalogue, we improve the precision of the rotational and astrometric parameters for 123 pulsars, for 47 by at least an order of magnitude. The time spans between our measurements and those in the literature are up to 48 yr, which allows us to investigate their long-term spin-down history and to estimate proper motions for 60 pulsars, of which 24 are newly determined and most are major improvements. The results are consistent with interferometric measurements from the literature. A model with two Gaussian components centred at 139 and 463 kms1463~\text{km} \: \text{s}^{-1} fits the transverse velocity distribution best. The pulse duty cycle distributions at 50 and 10 per cent maximum are best described by log-normal distributions with medians of 2.3 and 4.4 per cent, respectively. We discuss two pulsars that exhibit spin-down rate changes and drifting subpulses. Finally, we describe the autonomous observing system and the dynamic scheduler that has increased the observing efficiency by a factor of 2-3 in comparison with static scheduling.Comment: 31 pages, 14 figures, 6 tables, accepted for publication in MNRA

    Polarization studies of Rotating Radio Transients

    Get PDF
    We study the polarization properties of 22 known rotating radio transients (RRATs) with the 64-m Parkes radio telescope and present the Faraday rotation measures (RMs) for the 17 with linearly polarized flux exceeding the off-pulse noise by 3σ\sigma. Each RM was estimated using a brute-force search over trial RMs that spanned the maximum measurable range ±1.18×105radm2\pm1.18 \times 10^5 \, \mathrm{rad \, m^2} (in steps of 1 radm2\mathrm{rad \, m^2}), followed by an iterative refinement algorithm. The measured RRAT RMs are in the range |RM| 1\sim 1 to 950\sim 950 rad m2^{-2} with an average linear polarization fraction of 40\sim 40 per cent. Individual single pulses are observed to be up to 100 per cent linearly polarized. The RMs of the RRATs and the corresponding inferred average magnetic fields (parallel to the line-of-sight and weighted by the free electron density) are observed to be consistent with the Galactic plane pulsar population. Faraday rotation analyses are typically performed on accumulated pulsar data, for which hundreds to thousands of pulses have been integrated, rather than on individual pulses. Therefore, we verified the iterative refinement algorithm by performing Monte Carlo simulations of artificial single pulses over a wide range of S/N and RM. At and above a S/N of 17 in linearly polarized flux, the iterative refinement recovers the simulated RM value 100 per cent of the time with a typical mean uncertainty of 5\sim5 rad m2^{-2}. The method described and validated here has also been successfully used to determine reliable RMs of several fast radio bursts (FRBs) discovered at Parkes.Comment: Submitted to MNRAS, 10 pages, 6 figure
    corecore