3,292 research outputs found
The formation heritage of Jupiter Family Comet 10P/Tempel 2 as revealed by infrared spectroscopy
We present spectral and spatial information for major volatile species in
Comet 10P/Tempel 2, based on high-dispersion infrared spectra acquired on UT
2010 July 26 (heliocentric distance Rh = 1.44 AU) and September 18 (Rh = 1.62
AU), following the comet's perihelion passage on UT 2010 July 04. The total
production rate for water on July 26 was (1.90 +/- 0.12) x 10^28 molecules s-1,
and abundances of six trace gases (relative to water) were: CH3OH (1.58% +/-
0.23), C2H6 (0.39% +/- 0.04), NH3 (0.83% +/- 0.20), and HCN (0.13% +/- 0.02). A
detailed analysis of intensities for water emission lines provided a rotational
temperature of 35 +/- 3 K. The mean OPR is consistent with nuclear spin
populations in statistical equilibrium (OPR = 3.01 +/- 0.18), and the (1-sigma)
lower bound corresponds to a spin temperature > 38 K. Our measurements were
contemporaneous with a jet-like feature observed at optical wavelengths. The
spatial profiles of four primary volatiles display strong enhancements in the
jet direction, which favors release from a localized vent on the nucleus. The
measured IR continuum is much more sharply peaked and is consistent with a
dominant contribution from the nucleus itself. The peak intensities for H2O,
CH3OH, and C2H6 are offset by ~200 km in the jet direction, suggesting the
possible existence of a distributed source, such as the release of icy grains
that subsequently sublimed in the coma. On UT September 18, no obvious emission
lines were present in our spectra, nevertheless we obtained a 3-sigma upper
limit Q(H2O) < 2.86 x 10^27 molecules s-1
French responses to the Prague Spring: connections, (mis)perception and appropriation
Looking at the vast literature on the events of 1968 in various European countries, it is striking that the histories of '1968' of the Western and Eastern halves of the continent are largely still written separately.1 Nevertheless, despite the very different political and socio-economic contexts, the protest movements on both sides of the Iron Curtain shared a number of characteristics. The 1968 events in Czechoslovakia and Western Europe were, reduced to the basics, investigations into the possibility of marrying social justice with liberty, and thus reflected a tension within European Marxism. This essay provides an analysis specifically of the responses by the French left—the Communist Party, the student movements and the gauchistes—to the Prague Spring, characterised by misunderstandings and strategic appropriation. The Prague Spring was seen by both the reformist and the radical left in France as a moderate movement. This limited interpretation of the Prague Spring as a liberal democratic project continues to inform our memory of it
The elusive old population of the dwarf spheroidal galaxy Leo I
We report the discovery of a significant old population in the dwarf
spheroidal (dSph) galaxy Leo I as a result of a wide-area search with the ESO
New Technology Telescope. Studies of the stellar content of Local Group dwarf
galaxies have shown the presence of an old stellar population in almost all of
the dwarf spheroidals. The only exception was Leo I, which alone appeared to
have delayed its initial star formation episode until just a few Gyr ago. The
color-magnitude diagram of Leo I now reveals an extended horizontal branch,
unambiguously indicating the presence of an old, metal-poor population in the
outer regions of this galaxy. Yet we find little evidence for a stellar
population gradient, at least outside R > 2' (0.16 kpc), since the old
horizontal branch stars of Leo I are radially distributed as their more
numerous intermediate-age helium-burning counterparts. The discovery of a
definitely old population in the predominantly young dwarf spheroidal galaxy
Leo I points to a sharply defined first epoch of star formation common to all
of the Local Group dSph's as well as to the halo of the Milky Way.Comment: 4 pages, 3 postscript figures, uses apjfonts.sty, emulateapj.sty.
Accepted for publication in ApJ Letter
Isotopic ratios in outbursting comet C/2015 ER61
Isotopic ratios in comets are critical to understanding the origin of
cometary material and the physical and chemical conditions in the early solar
nebula. Comet C/2015 ER61 (PANSTARRS) underwent an outburst with a total
brightness increase of 2 magnitudes on the night of 2017 April 4. The sharp
increase in brightness offered a rare opportunity to measure the isotopic
ratios of the light elements in the coma of this comet. We obtained two
high-resolution spectra of C/2015 ER61 with UVES/VLT on the nights of 2017
April 13 and 17. At the time of our observations, the comet was fading
gradually following the outburst. We measured the nitrogen and carbon isotopic
ratios from the CN violet (0,0) band and found that C/C=100
15, N/N=130 15. In addition, we determined the
N/N ratio from four pairs of NH isotopolog lines and measured
N/N=140 28. The measured isotopic ratios of C/2015 ER61 do
not deviate significantly from those of other comets.Comment: 4 pages, 4 figures, accepted to be published by A&
On the nature of the enigmatic object IRAS 19312+1950: A rare phase of massive star formation?
IRAS 19312+1950 is a peculiar object that has eluded firm characterization
since its discovery, with combined maser properties similar to an evolved star
and a young stellar object (YSO). To help determine its true nature, we
obtained infrared spectra of IRAS 19312+1950 in the range 5-550 m using
the Herschel and Spitzer space observatories. The Herschel PACS maps exhibit a
compact, slightly asymmetric continuum source at 170 m, indicative of a
large, dusty circumstellar envelope. The far-IR CO emission line spectrum
reveals two gas temperature components: of material at
K, and of material at K. The OI 63
m line is detected on-source but no significant emission from atomic ions
was found. The HIFI observations display shocked, high-velocity gas with
outflow speeds up to 90 km s along the line of sight. From Spitzer
spectroscopy, we identify ice absorption bands due to HO at 5.8 m and
CO at 15 m. The spectral energy distribution is consistent with a
massive, luminous () central source surrounded by a
dense, warm circumstellar disk and envelope of total mass
-, with large bipolar outflow cavities. The combination
of distinctive far-IR spectral features suggest that IRAS 19312+1950 should be
classified as an accreting high-mass YSO rather than an evolved star. In light
of this reclassification, IRAS 19312+1950 becomes only the 5th high-mass
protostar known to exhibit SiO maser activity, and demonstrates that 18 cm OH
maser line ratios may not be reliable observational discriminators between
evolved stars and YSOs.Comment: 16 pages. Accepted for publication in Ap
Temporal and Spatial Aspects of Gas Release During the 2010 Apparition of Comet 103P/Hartley-2
We report measurements of eight primary volatiles (H2O, HCN, CH4, C2H6,
CH3OH, C2H2, H2CO, and NH3) and two product species (OH and NH2) in comet
103P/Hartley-2 using high dispersion infrared spectroscopy. We quantified the
long- and short-term behavior of volatile release over a three-month interval
that encompassed the comet's close approach to Earth, its perihelion passage,
and flyby of the comet by the Deep Impact spacecraft during the EPOXI mission.
We present production rates for individual species, their mixing ratios
relative to water, and their spatial distributions in the coma on multiple
dates. The production rates for water, ethane, HCN, and methanol vary in a
manner consistent with independent measures of nucleus rotation, but mixing
ratios for HCN, C2H6, & CH3OH are independent of rotational phase. Our results
demonstrate that the ensemble average composition of gas released from the
nucleus is well defined, and relatively constant over the three-month interval
(September 18 through December 17). If individual vents vary in composition,
enough diverse vents must be active simultaneously to approximate (in sum) the
bulk composition of the nucleus. The released primary volatiles exhibit diverse
spatial properties which favor the presence of separate polar and apolar ice
phases in the nucleus, establish dust and gas release from icy clumps (and
also, directly from the nucleus), and provide insights into the driver for the
cyanogen (CN) polar jet. The spatial distributions of C2H6 & HCN along the
near-polar jet (UT 19.5 October) and nearly orthogonal to it (UT 22.5 October)
are discussed relative to the origin of CN. The ortho-para ratio (OPR) of water
was 2.85 \pm 0.20; the lower bound (2.65) defines Tspin > 32 K. These values
are consistent with results returned from ISO in 1997.Comment: 18 pages, 3 figures, to be published in: Astrophysical Journal
Letter
Infrared Observations of Hot Gas and Cold Ice toward the Low Mass Protostar Elias 29
We have obtained the full 1-200 um spectrum of the low luminosity (36 Lsun)
Class I protostar Elias 29 in the Rho Ophiuchi molecular cloud. It provides a
unique opportunity to study the origin and evolution of interstellar ice and
the interrelationship of interstellar ice and hot core gases around low mass
protostars. We see abundant hot CO and H2O gas, as well as the absorption bands
of CO, CO2, H2O and ``6.85 um'' ices. We compare the abundances and physical
conditions of the gas and ices toward Elias 29 with the conditions around
several well studied luminous, high mass protostars. The high gas temperature
and gas/solid ratios resemble those of relatively evolved high mass objects
(e.g. GL 2591). However, none of the ice band profiles shows evidence for
significant thermal processing, and in this respect Elias 29 resembles the
least evolved luminous protostars, such as NGC 7538 : IRS9. Thus we conclude
that the heating of the envelope of the low mass object Elias 29 is
qualitatively different from that of high mass protostars. This is possibly
related to a different density gradient of the envelope or shielding of the
ices in a circumstellar disk. This result is important for our understanding of
the evolution of interstellar ices, and their relation to cometary ices.Comment: 18 pages and 14 figures, accepted for publication in A&
Inelastic electron tunneling via molecular vibrations in single-molecule transistors
In single-molecule transistors, we observe inelastic cotunneling features
that correspond energetically to vibrational excitations of the molecule, as
determined by Raman and infrared spectroscopy. This is a form of inelastic
electron tunneling spectroscopy of single molecules, with the transistor
geometry allowing in-situ tuning of the electronic states via a gate electrode.
The vibrational features shift and change shape as the electronic levels are
tuned near resonance, indicating significant modification of the vibrational
states. When the molecule contains an unpaired electron, we also observe
vibrational satellite features around the Kondo resonance.Comment: 5 pages, 4 figures. Supplementary information available upon reques
Individual Characteristics and Stated Preferences for Alternative Energy Sources and Propulsion Technologies in Vehicles: A Discrete Choice Analysis
This paper empirically examines the determinants of the demand for alternative energy sources and propulsion technologies in vehicles. The data stem from a stated preference discrete choice experiment with 598 potential car buyers. In order to simulate a realistic automobile purchase situation, seven alternatives were incorporated in each of the six choice sets, i.e. hybrid, gas, biofuel, hydrogen, and electric as well as the common fuels gasoline and diesel. The vehicle types were additionally characterized by a set of attributes, such as purchase price or motor power. Besides these vehicle attributes, our study particularly considers a multitude of individual characteristics, such as socio-demographic and vehicle purchase variables. The econometric analysis with multinomial probit models identifies some population groups with a higher propensity for alternative energy sources or propulsion technologies in vehicles, which can be focused by policy and automobile firms. For example, younger people and people who usually purchase environment-friendly products have a higher stated preference to purchase biofuel, hydrogen, and electric automobiles than other population groups. Methodologically, our study highlights the importance of the inclusion of taste persistence across the choice sets. Furthermore, it suggests a high number of random draws in the Geweke-Hajivassiliou-Keane simulator, which is incorporated in the simulated maximum likelihood estimation and the simulated testing of statistical hypotheses
Convergence of invariant densities in the small-noise limit
This paper presents a systematic numerical study of the effects of noise on
the invariant probability densities of dynamical systems with varying degrees
of hyperbolicity. It is found that the rate of convergence of invariant
densities in the small-noise limit is frequently governed by power laws. In
addition, a simple heuristic is proposed and found to correctly predict the
power law exponent in exponentially mixing systems. In systems which are not
exponentially mixing, the heuristic provides only an upper bound on the power
law exponent. As this numerical study requires the computation of invariant
densities across more than 2 decades of noise amplitudes, it also provides an
opportunity to discuss and compare standard numerical methods for computing
invariant probability densities.Comment: 27 pages, 19 figures, revised with minor correction
- …