17,378 research outputs found

    One-dimensional vertical dust strings in a glass box

    Full text link
    The oscillation spectrum of a one-dimensional vertical dust string formed inside a glass box on top of the lower electrode in a GEC reference cell was studied. A mechanism for creating a single vertical dust string is described. It is shown that the oscillation amplitudes, resonance frequencies, damping coefficients, and oscillation phases of the dust particles separate into two distinct groups. One group exhibits low damping coefficients, increasing amplitudes and decreasing resonance frequencies for dust particles closer to the lower electrode. The other group shows high damping coefficients but anomalous resonance frequencies and amplitudes. At low oscillation frequencies, the two groups are also separated by a {\pi}-phase difference. One possible cause for the difference in behavior between the two groups is discussed

    Massive and low-mass protostars in massive "starless" cores

    Get PDF
    The infrared dark clouds (IRDCs) G11.11-0.12 and G28.34++0.06 are two of the best-studied IRDCs in our Galaxy. These two clouds host clumps at different stages of evolution, including a massive dense clump in both clouds that is dark even at 70 and 100μ\mum. Such seemingly quiescent massive dense clumps have been speculated to harbor cores that are precursors of high-mass stars and clusters. We observed these two "prestellar" regions at 1mm with the Submillimeter Array (SMA) with the aim of characterizing the nature of such cores. We show that the clumps fragment into several low- to high-mass cores within the filamentary structure of the enveloping cloud. However, while the overall physical properties of the clump may indicate a starless phase, we find that both regions host multiple outflows. The most massive core though 70 μ\mum dark in both clumps is clearly associated with compact outflows. Such low-luminosity, massive cores are potentially the earliest stage in the evolution of a massive protostar. We also identify several outflow features distributed in the large environment around the most massive core. We infer that these outflows are being powered by young, low-mass protostars whose core mass is below our detection limit. These findings suggest that low-mass protostars have already formed or are coevally formed at the earliest phase of high-mass star formation.Comment: in print at A&

    On Silicon Carbide Grains as the Carrier of the 21 Micron Emission Feature in Post-Asymptotic Giant Branch Stars

    Get PDF
    The mysterious 21mu emission feature seen in 12 proto-planetary nebulae (PPNe) remains unidentified since its first detection in 1989. Over a dozen of candidate materials have been proposed within the past decade, but none of them has received general acceptance. Very recently, silicon carbide (SiC) grains with impurities were suggested to be the carrier of this enigmatic feature, based on recent laboratory data that doped SiC grains exhibit a resonance at \~21mu. This proposal gains strength from the fact that SiC is a common dust species in carbon-rich circumstellar envelopes. However, SiC dust has a strong vibrational band at ~11.3mu. We show in this Letter that in order to be consistent with the observed flux ratios of the 11.3mu feature to the 21mu feature, the band strength of the 21mu resonance has to be very strong, too strong to be consistent with current laboratory measurements. But this does not yet readily rule out the SiC hypothesis since recent experimental results have demonstrated that the 21mu resonance of doped SiC becomes stronger as the C impurity increases. Further laboratory measurements of SiC dust with high fractions of C impurity are urgently needed to test the hypothesis of SiC as the carrier of the 21mu feature.Comment: 14 pages, 3 figures, accepted for publication in ApJ

    Electric-field-induced phase transition of <001> oriented Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals

    Full text link
    oriented 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 single crystals were poled under different electric fields, i.e. Epoling=4 kV/cm and Epoling=13 kV/cm. In addition to the temperature-dependent dielectric constant measurement, X-ray diffraction was also used to identify the poling-induced phase transitions. Results showed that the phase transition significantly depends on the poling intensity. A weaker field (Epoling=4 kV/cm) can overcome the effect of random internal field to perform the phase transition from rhombohedral ferroelectric state with short range ordering (microdomain) FESRO to rhombohedral ferroelectric state with long range ordering (macrodomain) FElRO. But the rhombohedral ferroelectric to tetragonal ferroelectric phase transition originating from to polarization rotation can only be induced by a stronger field (Epoling=13 kV/cm). The sample poled at Epoling=4 kV/cm showed higher piezoelectric constant, d33>1500 pC/N, than the sample poled at Epoling=13 kV/cm.Comment: 7 pages, 2 figure

    Impacts of large-scale oscillations on pan-Arctic terrestrial net primary production

    Get PDF
    Analyses of regional climate oscillations and satellite remote sensing derived net primary production (NPP) and growing season dynamics for the pan-Arctic region indicate that the oscillations influence NPP by regulating seasonal patterns of low temperature and moisture constraints to photosynthesis. Early-spring (Feb–Apr) patterns of the Arctic Oscillation (AO) are proportional to growing season onset (r = −0.653; P = 0.001), while growing season patterns of the Pacific Decadal Oscillation (PDO) are proportional to plant-available moisture constraints to NPP (Im) (r = −0.471; P = 0.023). Relatively strong, negative PDO phases from 1988–1991 and 1998–2002 coincided with prolonged regional droughts indicated by a standardized moisture stress index. These severe droughts resulted in widespread reductions in NPP, especially for relatively drought prone boreal forest and grassland/cropland ecosystems. The influence of AO and PDO patterns on northern vegetation productivity appears to be decreasing and increasing, respectively, as low temperature constraints to plant growth relax and NPP becomes increasingly limited by available water supply under a warming climate

    IgM and IgA in addition to IgG autoantibodies against FcɛRIα are frequent and associated with disease markers of chronic spontaneous urticaria

    Get PDF
    Background IgG autoantibodies against the high-affinity IgE receptor, FcɛRIα, contribute the pathogenesis of autoimmune chronic spontaneous urticaria (CSU). However, it is not known whether such patients also exhibit IgM or IgA autoantibodies against FcɛRIα. To address this question we developed an ELISA to assess serum levels of IgG, IgM, and IgA autoantibodies against FcɛRIα and investigated whether their presence is linked to clinical features of CSU including the response to autologous serum skin testing (ASST). Methods Serum samples of 35 CSU patients (25 ASST-positive) and 52 healthy control individuals were analyzed using a newly developed competitive ELISA for IgG, IgM, and IgA autoantibodies to FcɛRIα. Results One in four CSU patients (8/35, 24%) had elevated serum levels of IgG-anti-FcɛRIα compared with (3/52, 6%) healthy controls. More than half of patients had IgM (21/35, 60%) and IgA (20/35, 57%) vs (3/52, 5%) each in healthy controls. Elevated IgM, but not IgG or IgA, autoantibodies were significantly more frequent in ASST-positive CSU patients (18/25, 72%) compared with ASSTnegative patients (3/10, 33%,P = .022). Also, elevated levels of IgM-anti-FcɛRIα, but not of IgG or IgA against FcɛRIα, were linked to low blood basophil (r = .414,P = .021) and eosinophil (r = .623,P < .001) counts. Conclusions Increased serum levels of IgM-anti-FcɛRIα are common in patients with CSU and linked to features of autoimmune CSU. The role and relevance of autoantibodies to FcɛRIα in CSU can and should be further characterized in future studies, and our novel assay can help with this

    Towards Deep Universal Sketch Perceptual Grouper

    Get PDF
    Human free-hand sketches provide the useful data for studying human perceptual grouping, where the grouping principles such as the Gestalt laws of grouping are naturally in play during both the perception and sketching stages. In this paper, we make the first attempt to develop a universal sketch perceptual grouper. That is, a grouper that can be applied to sketches of any category created with any drawing style and ability, to group constituent strokes/segments into semantically meaningful object parts. The first obstacle to achieving this goal is the lack of large-scale datasets with grouping annotation. To overcome this, we contribute the largest sketch perceptual grouping dataset to date, consisting of 20 000 unique sketches evenly distributed over 25 object categories. Furthermore, we propose a novel deep perceptual grouping model learned with both generative and discriminative losses. The generative loss improves the generalization ability of the model, while the discriminative loss guarantees both local and global grouping consistency. Extensive experiments demonstrate that the proposed grouper significantly outperforms the state-of-the-art competitors. In addition, we show that our grouper is useful for a number of sketch analysis tasks, including sketch semantic segmentation, synthesis, and fine-grained sketch-based image retrieval. © 1992-2012 IEEE

    Different atmospheric moisture divergence responses to extreme and moderate El Niños

    Get PDF
    On seasonal and inter-annual time scales, vertically integrated moisture divergence provides a useful measure of the tropical atmospheric hydrological cycle. It reflects the combined dynamical and thermodynamical effects, and is not subject to the limitations that afflict observations of evaporation minus precipitation. An empirical orthogonal function (EOF) analysis of the tropical Pacific moisture divergence fields calculated from the ERA-Interim reanalysis reveals the dominant effects of the El Niño-Southern Oscillation (ENSO) on inter-annual time scales. Two EOFs are necessary to capture the ENSO signature, and regression relationships between their Principal Components and indices of equatorial Pacific sea surface temperature (SST) demonstrate that the transition from strong La Niña through to extreme El Niño events is not a linear one. The largest deviation from linearity is for the strongest El Niños, and we interpret that this arises at least partly because the EOF analysis cannot easily separate different patterns of responses that are not orthogonal to each other. To overcome the orthogonality constraints, a self-organizing map (SOM) analysis of the same moisture divergence fields was performed. The SOM analysis captures the range of responses to ENSO, including the distinction between the moderate and strong El Niños identified by the EOF analysis. The work demonstrates the potential for the application of SOM to large scale climatic analysis, by virtue of its easier interpretation, relaxation of orthogonality constraints and its versatility for serving as an alternative classification method. Both the EOF and SOM analyses suggest a classification of “moderate” and “extreme” El Niños by their differences in the magnitudes of the hydrological cycle responses, spatial patterns and evolutionary paths. Classification from the moisture divergence point of view shows consistency with results based on other physical variables such as SST
    corecore