293 research outputs found

    Complex sequencing rules of birdsong can be explained by simple hidden Markov processes

    Get PDF
    Complex sequencing rules observed in birdsongs provide an opportunity to investigate the neural mechanism for generating complex sequential behaviors. To relate the findings from studying birdsongs to other sequential behaviors, it is crucial to characterize the statistical properties of the sequencing rules in birdsongs. However, the properties of the sequencing rules in birdsongs have not yet been fully addressed. In this study, we investigate the statistical propertiesof the complex birdsong of the Bengalese finch (Lonchura striata var. domestica). Based on manual-annotated syllable sequences, we first show that there are significant higher-order context dependencies in Bengalese finch songs, that is, which syllable appears next depends on more than one previous syllable. This property is shared with other complex sequential behaviors. We then analyze acoustic features of the song and show that higher-order context dependencies can be explained using first-order hidden state transition dynamics with redundant hidden states. This model corresponds to hidden Markov models (HMMs), well known statistical models with a large range of application for time series modeling. The song annotation with these models with first-order hidden state dynamics agreed well with manual annotation, the score was comparable to that of a second-order HMM, and surpassed the zeroth-order model (the Gaussian mixture model (GMM)), which does not use context information. Our results imply that the hierarchical representation with hidden state dynamics may underlie the neural implementation for generating complex sequences with higher-order dependencies

    Large transport critical currents of powder-in-tube Sr0.6K0.4Fe2As2/Ag superconducting wires and tapes

    Full text link
    We report significant transport critical currents firstly achieved in Sr0.6K0.4Fe2As2 wires and tapes with a Tc = 34 K, which were fabricated through an in-situ powder-in-tube process. Silver was used as a chemical addition as well as a sheath material. Transport measurements were performed by a standard four-probe resistive method. All the wire and tape samples have shown transport properties. Critical current density Jc was enhanced upon silver addition, and at 4.2 K, a best Jc of ~1200 A/cm^2 (Ic = 9 A) was achieved for 20 % silver added tapes, which is the highest in iron-based wires and tapes so far. The Jc is almost field independent between 1 T and 10 T, exhibiting a strong vortex pinning. Such a high transport critical current density is attributed to the absence of reaction layer between the silver sheath and superconducting core, as well as an improved connectivity between grains. We also identify a weak-link behavior from the creep drop of Jc at low fields and a hysteretic phenomenon. Finally, we found that compared to Fe, Ta and Nb tubes, Ag was the best sheath material for the fabrication of high-performance 122 type pnictide wires and tapes.Comment: 14 pages, 4 figure

    Fez function is required to maintain the size of the animal plate in the sea urchin embryo

    Get PDF
    Partitioning ectoderm precisely into neurogenic and non-neurogenic regions is an essential step for neurogenesis of almost all bilaterian embryos. Although it is widely accepted that antagonism between BMP and its inhibitors primarily sets up the border between these two types of ectoderm, it is unclear how such extracellular, diffusible molecules create a sharp and precise border at the single-cell level. Here, we show that Fez, a zinc finger protein, functions as an intracellular factor attenuating BMP signaling specifically within the neurogenic region at the anterior end of sea urchin embryos, termed the animal plate. When Fez function is blocked, the size of this neurogenic ectoderm becomes smaller than normal. However, this reduction is rescued in Fez morphants simply by blocking BMP2/4 translation, indicating that Fez maintains the size of the animal plate by attenuating BMP2/4 function. Consistent with this, the gradient of BMP activity along the aboral side of the animal plate, as measured by pSmad1/5/8 levels, drops significantly in cells expressing Fez and this steep decline requires Fez function. Our data reveal that this neurogenic ectoderm produces an intrinsic system that attenuates BMP signaling to ensure the establishment of a stable, well-defined neural territory, the animal plate

    Effect of riboflavin deficiency on development of the cerebral cortex in Slc52a3 knockout mice

    Get PDF
    Riboflavin transporter 3 (RFVT3), encoded by the SLC52A3 gene, is important for riboflavin homeostasis in the small intestine, kidney, and placenta. Our previous study demonstrated that Slc52a3 knockout (Slc52a3−/−) mice exhibited neonatal lethality and metabolic disorder due to riboflavin deficiency. Here, we investigated the influence of Slc52a3 gene disruption on brain development using Slc52a3−/− embryos. Slc52a3−/− mice at postnatal day 0 showed hypoplasia of the brain and reduced thickness of cortical layers. At embryonic day 13.5, the formation of Tuj1+ neurons and Tbr2+ intermediate neural progenitors was significantly decreased; no significant difference was observed in the total number and proliferative rate of Pax6+ radial glia. Importantly, the hypoplastic phenotype was rescued upon riboflavin supplementation. Thus, it can be concluded that RFVT3 contributes to riboflavin homeostasis in embryos and that riboflavin itself is required during embryonic development of the cerebral cortex in mice

    Physical Conditions in Molecular Clouds in the Arm and Interarm Regions of M51

    Get PDF
    We report systematic variations in the emission line ratio of the CO J = 2-1 and J = 1-0 transitions (R_(2-1/1-0)) in the grand-design spiral galaxy M51. The R_(2-1/1-0) ratio shows clear evidence for the evolution of molecular gas from the upstream interarm regions into the spiral arms and back into the downstream interarm regions. In the interarm regions, R_(2-1/1-0) is typically 0.7 (often 0.8-1.0) in the spiral arms, particularly at the leading (downstream) edge of the molecular arms. These trends are similar to those seen in Galactic GMCs with OB star formation (presumably in the Galactic spiral arms). R_(2-1/1-0) is also high, ~0.8-1.0, in the central region of M51. Analysis of the molecular excitation using a Large Velocity Gradient radiative transfer calculation provides insight into the changes in the physical conditions of molecular gas between the arm and interarm regions: cold and low-density gas (≾ 10 K, ≾ 300 cm^(–3)) is required for the interarm GMCs, but this gas must become warmer and/or denser in the more active star-forming spiral arms. The ratio R_(2-1/1-0) is higher in areas of high 24 μm dust surface brightness (which is an approximate tracer of star formation rate surface density) and high CO(1-0) integrated intensity (i.e., a well-calibrated tracer of total molecular gas surface density). The systematic enhancement of the CO(2-1) line relative to CO(1-0) in luminous star-forming regions suggests that some caution is needed when using CO(2-1) as a tracer of bulk molecular gas mass, especially when galactic structures are resolved

    Nepmucin, a novel HEV sialomucin, mediates L-selectin–dependent lymphocyte rolling and promotes lymphocyte adhesion under flow

    Get PDF
    Lymphocyte trafficking to lymph nodes (LNs) is initiated by the interaction between lymphocyte L-selectin and certain sialomucins, collectively termed peripheral node addressin (PNAd), carrying specific carbohydrates expressed by LN high endothelial venules (HEVs). Here, we identified a novel HEV-associated sialomucin, nepmucin (mucin not expressed in Peyer's patches [PPs]), that is expressed in LN HEVs but not detectable in PP HEVs at the protein level. Unlike conventional sialomucins, nepmucin contains a single V-type immunoglobulin (Ig) domain and a mucin-like domain. Using materials affinity-purified from LN lysates with soluble L-selectin, we found that two higher molecular weight species of nepmucin (75 and 95 kD) were decorated with oligosaccharides that bind L-selectin as well as an HEV-specific MECA-79 monoclonal antibody. Electron microscopic analysis showed that nepmucin accumulates in the extended luminal microvillus processes of LN HEVs. Upon appropriate glycosylation, nepmucin supported lymphocyte rolling via its mucin-like domain under physiological flow conditions. Furthermore, unlike most other sialomucins, nepmucin bound lymphocytes via its Ig domain, apparently independently of lymphocyte function–associated antigen 1 and very late antigen 4, and promoted shear-resistant lymphocyte binding in combination with intercellular adhesion molecule 1. Collectively, these results suggest that nepmucin may serve as a dual-functioning PNAd in LN HEVs, mediating both lymphocyte rolling and binding via different functional domains
    corecore