6 research outputs found

    The Potential Impact of Climate Extremes on Cotton and Wheat Crops in Southern Punjab, Pakistan

    Get PDF
    The assessment of climate extremes’ impact on crop yield is essential to improve our understanding of agricultural resilience. In the present study, we analyzed the potential impact of climate extremes on wheat and cotton production in Southern Punjab, Pakistan using 30-year observed data from the Pakistan Meteorological Department (PMD) and the fifth-generation reanalysis data (ERA-5) from the European Center for Medium-Range Weather Forecasts (ECMWF). Cotton is a Kharif season crop that is sown in May and harvested in October, and wheat is a Rabi season crop that is planted in November and harvested in April. The agricultural data (1985–2015) that contained the crop area and crop yield were obtained from the Bureau of Statistics, Punjab for six selected districts in Southern Punjab. Three precipitation indices, namely consecutive dry days (CDD), consecutive wet days (CWD) and total precipitation of wet days (PRCPTOT), and four temperature indices, namely warm days (TX90p), warm nights (TN90p), cool days (TX10p) and cool nights (TN10p), were selected to analyze the potential impacts of climate extremes on crop production. (1) We found a potential association of TX10p, TN10p, TX90p and TN90p with crop yield in those years for which the production area remained the same. (2) In a few districts of the study area, the wheat yield losses in the Rabi season were associated with an increase in warmer days and warmer nights. (3) The grain size was suppressed due to an increase in the frequency of TX90p and TN90p, which ultimately reduced the net crop production. (4) In some districts, we found strong positive correlations between extreme temperature indices and crop yield; however, other potential factors such as the use of advanced technology, fertilizer, seeds, etc., may lead to improved net production. This study can help in adaptation planning for resilient agricultural production under the stress of climate extreme events in Southern Punjab

    Climate trends and extremes in the Indus River Basin, Pakistan: implications for agricultural production

    Get PDF
    ABSTRACT: Historical and future projected changes in climatic patterns over the largest irrigated basin in the world, the Indus River Basin (IRB), threaten agricultural production and food security in Pakistan, in particular for vulnerable farming communities. To build a more detailed understanding of the impacts of climate change on agricultures in the IRB, the present study analyzes (1) observed trends in average temperature, precipitation and related extreme indicators, as well as seasonal shifts over a recent historical period (1997-2016); and (2) statistically downscaled future projections (up to 2100) from a set of climate models in conjunction with crop-specific information for the four main crops of the IRB: wheat, cotton, rice and sugarcane. Key findings show an increasing trend of about over 0.1ºC/year in observed minimum temperature across the study area over the historical period, but no significant trend in maximum temperature. Historical precipitation shows a positive annual increase driven mainly by changes in August and September. Future projections highlight continued warming resulting in critical heat thresholds for the four crops analyzed being increasingly exceeded into the future, in particular in the Kharif season. Concurrently, inter-annual rainfall variability is projected to increase up to 10-20% by the end of the 21st century, augmenting uncertainty of water availability in the basin. These findings provide insight into the nature of recent climatic shifts in the IRB and emphasize the importance of using climate impact assessments to develop targeted investments and efficient adaptation measures to ensure resilience of agriculture in Pakistan into the futur

    Agrometeorological wheat yield prediction in rainfed Potohar region of Pakistan

    Full text link
    Deshoulières François. La représentation des sacrements. In: Bulletin Monumental, tome 88, année 1929. p. 536

    Comparison of future and base precipitation anomalies by SimCLIM statistical projection through ensemble approach in Pakistan

    No full text
    Unpredictable precipitation trends have largely influenced by climate change which prolonged droughts or floods in South Asia. Statistical analysis of monthly, seasonal, and annual precipitation trend carried out for different temporal (1996–2015 and 2041–2060) and spatial scale (39 meteorological stations) in Pakistan. Statistical downscaling model (SimCLIM) was used for future precipitation projection (2041–2060) and analyzed by statistical approach. Ensemble approach combined with representative concentration pathways (RCPs) at medium level used for future projections. The magnitude and slop of trends were derived by applying Mann-Kendal and Sen's slop statistical approaches. Geo-statistical application used to generate precipitation trend maps. Comparison of base and projected precipitation by statistical analysis represented by maps and graphical visualization which facilitate to detect trends. Results of this study projects that precipitation trend was increasing more than 70% of weather stations for February, March, April, August, and September represented as base years. Precipitation trend was decreased in February to April but increase in July to October in projected years. Highest decreasing trend was reported in January for base years which was also decreased in projected years. Greater variation in precipitation trends for projected and base years was reported in February to April. Variations in projected precipitation trend for Punjab and Baluchistan highly accredited in March and April. Seasonal analysis shows large variation in winter, which shows increasing trend for more than 30% of weather stations and this increased trend approaches 40% for projected precipitation. High risk was reported in base year pre-monsoon season where 90% of weather station shows increasing trend but in projected years this trend decreased up to 33%. Finally, the annual precipitation trend has increased for more than 90% of meteorological stations in base (1996–2015) which has decreased for projected year (2041–2060) up to 76%. These result revealed that overall precipitation trend is decreasing in future year which may prolonged the drought in 14% of weather stations under study

    Betrixaban for first-line venous thromboembolism prevention in acute medically ill patients with risk factors for venous thromboembolism.

    No full text
    Compared to other direct oral anticoagulants, betrixaban has a longer half-life, smaller peak-trough variance, minimal renal clearance, and minimal hepatic Cytochrome P (CYP) metabolism. The Acute Medically Ill VTE Prevention with Extended Duration Betrixaban (APEX) trial evaluated the efficacy and safety of extended duration betrixaban compared to standard duration enoxaparin in acutely ill hospitalized patients. Areas covered: This article describes the role of betrixaban in the prevention of venous thromboembolism (VTE) in acutely ill medical patients. This article provides a consolidated summary of the primary APEX study findings as well as prespecified and exploratory substudies. This article also provides a review of the results of studies in which other direct factor Xa inhibitors have been evaluated in an extended duration regimen in this patient population. Expert commentary: While previous agents have demonstrated that extended duration VTE prophylaxis can be efficacious, betrixaban is the first agent to demonstrate efficacy without an increase in major bleeding. The totality of the data from the APEX trial supports extended duration betrixaban for VTE prophylaxis in the acute medically ill patient population. As such, betrixaban has been approved in the USA for extended VTE prophylaxis in at-risk acute medically ill patients
    corecore