117 research outputs found

    Transport properties of CuGaSe(2)-based thin-film solar cells as a function of absorber composition

    Get PDF
    The transport properties of thin-film solar cells based on wide-gap CuGaSe(2) absorbers have been investigated as a function of the bulk [Ga]/[Cu] ratio ranging from 1.01 to 1.33. We find that (i) the recombination processes in devices prepared from absorbers with a composition close to stoichiometry ([Ga]/[Cu] = 1.01) are strongly tunnelling assisted resulting in low recombination activation energies (E(a)) of approx. 0.95 eV in the dark and 1.36 eV under illumination. (ii) With an increasing [Ga]/[Cu] ratio, the transport mechanism changes to be dominated by thermally activated Shockley-Read-Hall recombination with similar E(a) values of approx. 1.52-1.57 eV for bulk [Ga]/[Cu] ratios of 1.12-1.33. The dominant recombination processes take place at the interface between CdS buffer and CuGaSe(2) absorber independently from the absorber composition. The increase of E(a) with the [Ga]/[Cu] ratio correlates with the open circuit voltage and explains the better performance of corresponding solar cells

    Electronic structure, linear, nonlinear optical susceptibilities and birefringence of CuInX2 (X = S, Se, Te) chalcopyrite-structure compounds

    Full text link
    The electronic structure, linear and nonlinear optical properties have been calculated for CuInX2 (X=S, Se, Te) chalcopyrite-structure single crystals using the state-of-the-art full potential linear augmented plane wave (FP-LAPW) method. We present results for band structure, density of states, and imaginary part of the frequency-dependent linear and nonlinear optical susceptibilities. We find that these crystals are semiconductors with direct band gaps. We have calculated the birefringence of these crystals. The birefringence is negative for CuInS2 and CuInSe2 while it is positive for CuInTe2 in agreement with the experimental data. Calculations are reported for the frequency-dependent complex second-order non-linear optical susceptibilities . The intra-band and inter-band contributions to the second harmonic generation increase when we replace S by Se and decrease when we replace Se by Te. We find that smaller energy band gap compounds have larger values of in agreement with the experimental data and previous theoretical calculations.Comment: 17 pages, 6 figure

    MMN and Differential Waveform

    Get PDF
    A mismatch negativity response (MMN) and a new differential waveform were derived in an effort to evaluate a neural refractory or recovery effect in adult listeners. The MMN was elicited using oddball test runs in which the standard and deviant stimuli differed in frequency. To derive the differential waveform, the same standard and deviant stimuli were presented alone. MMN responses were obtained by subtracting the averaged responses to standards from the deviants. The differential waveforms were obtained by subtracting the averaged responses to standards presented alone from deviants presented alone. Scalp topography for the MMN and differential waveforms were similar. A significant (p < .05) positive and negative correlation was found between the earlier and later components of the bimodal MMN and the N1 and P2 component of the differential waveform, respectively. Further, N1 and P2 of the differential waveform were significant (p < .05) predictor variables of early and late peak amplitudes of the MMN. These results suggest that refractory effects may overlay/modify the morphology of the MMN waveform

    Copper indium diselenide: crystallography and radiation-induced dislocation loops

    Get PDF
    Copper indium diselenide (CIS) is a prime candidate as the absorber layer in solar cells for use in extraterrestrial environments due to its good photovoltaic efficiency and ability to resist radiation damage. While CIS-based devices have been tested extensively in the laboratory using electron and proton irradiation, there is still little understanding of the underlying mechanisms which give rise to its radiation hardness. To gain better insight into the response of CIS to displacing radiation, transmission electron microscope samples have been irradiated in situ with 400 keV Xe ions at the Intermediate Voltage Electron Microscope facility at Argonne National Laboratory, USA. At room temperature, dislocation loops were observed to form and grow with increasing fluence. These loops have been investigated using g  ·  b techniques and inside/outside contrast analysis. They have been found to reside on {112} planes and to be interstitial in nature. The Burgers vector were calculated as b  = 1/6 221. The compositional content of these interstitial loops was found to be indistinguishable from the surrounding matrix within the sensitivity of the techniques used. To facilitate this work, experimental electron-diffraction zone-axis pattern maps were produced and these are also presented, along with analysis of the [100] zone-axis pattern

    Induced Recrystallization of CdTe Thin Films Deposited by Close- Spaced Sublimation Work performed under task number PV903201 Induced Recrystallization of CdTe Thin Films Deposited by Close-Spaced Sublimation

    No full text
    Abstract. We have deposited CdTe thin films by close-spaced sublimation at two different temperature ranges. The films deposited at the lower temperature partially recrystallized after CdCl 2 treatment at 350ÂşC and completely recrystallized after the same treatment at 400ÂşC. The films deposited at higher temperature did not recrystallize at these two temperatures. These results confirmed that the mechanisms responsible for changes in physical properties of CdTe films treated with CdCl 2 are recrystallization and grain growth, and provided an alternative method to deposit CSS films using lower temperatures
    • …
    corecore