596 research outputs found
Quantum Cosmology and Conformal Invariance
According to Belinsky, Khalatnikov and Lifshitz, gravity near a space-like
singularity reduces to a set of decoupled one-dimensional mechanical models at
each point in space. We point out that these models fall into a class of
conformal mechanical models first introduced by de Alfaro, Fubini and Furlan
(DFF). The deformation used by DFF to render the spectrum discrete corresponds
to a negative cosmological constant. The wave function of the universe is the
zero-energy eigenmode of the Hamiltonian, also known as the spherical vector of
the representation of the conformal group SO(1,2). A new class of conformal
quantum mechanical models is constructed, based on the quantization of
nilpotent coadjoint orbits, where the conformal group is enhanced to an ADE
non-compact group for which the spherical vector is known.Comment: 4 pages, latex2e, uses revtex
Representations of Quantum Affine Algebras
In this paper we define a quantum version of the ``fusion'' tensor product of
two representations of an affine Kac-Moody algebra.It is replaced by what we
call fusion action of the category of finite-dimensional representations of
quantum affine algebra on its highest weight representations. We construct a
quantum version of the associativity constraint. We give categorical treatment
of the subject and related questions ( like quantum Knizhnik-Zamolodchikov
equations).Comment: plain TeX, 61 page
A logarithmic generalization of tensor product theory for modules for a vertex operator algebra
We describe a logarithmic tensor product theory for certain module categories
for a ``conformal vertex algebra.'' In this theory, which is a natural,
although intricate, generalization of earlier work of Huang and Lepowsky, we do
not require the module categories to be semisimple, and we accommodate modules
with generalized weight spaces. The corresponding intertwining operators
contain logarithms of the variables.Comment: 39 pages. Misprints corrected. Final versio
Minimal representations, spherical vectors, and exceptional theta series I
Theta series for exceptional groups have been suggested as a possible description of the eleven-dimensional quantized BPS membrane. We present explicit formulae for these automorphic forms whenever the underlying Lie group is simply laced. Specifically, we review and construct explicitly the minimal representation of which generalizes the Schr\"odinger representation of symplectic groups. The real spherical vector invariant under the maximal compact subgroup is computed in this representation and yields the action appearing in the summand of the automorphic theta series. The summation measure can be obtained from the p-adic form of the spherical vector and is left to the sequel of this paper. The simplicity of our result is suggestive of a new Born-Infeld-like description of the membrane where U-duality is realized non-linearly. Our results may also be used in constructing quantum mechanical systems with hidden non-compact symmetries
A unified approach on Springer fibers in the hook, two-row and two-column cases
We consider the Springer fiber over a nilpotent endomorphism. Fix a Jordan
basis and consider the standard torus relative to this. We deal with the
problem to describe the flags fixed by the torus which belong to a given
component of the Springer fiber. We solve the problem in the hook, two-row and
two-column cases. We provide two main characterizations which are common to the
three cases, and which involve dominance relations between Young diagrams and
combinatorial algorithms. Then, for these three cases, we deduce topological
properties of the components and their intersections.Comment: 42 page
Monoids, Embedding Functors and Quantum Groups
We show that the left regular representation \pi_l of a discrete quantum
group (A,\Delta) has the absorbing property and forms a monoid
(\pi_l,\tilde{m},\tilde{\eta}) in the representation category Rep(A,\Delta).
Next we show that an absorbing monoid in an abstract tensor *-category C gives
rise to an embedding functor E:C->Vect_C, and we identify conditions on the
monoid, satisfied by (\pi_l,\tilde{m},\tilde{\eta}), implying that E is
*-preserving. As is well-known, from an embedding functor E: C->\mathrm{Hilb}
the generalized Tannaka theorem produces a discrete quantum group (A,\Delta)
such that C is equivalent to Rep_f(A,\Delta). Thus, for a C^*-tensor category C
with conjugates and irreducible unit the following are equivalent: (1) C is
equivalent to the representation category of a discrete quantum group
(A,\Delta), (2) C admits an absorbing monoid, (3) there exists a *-preserving
embedding functor E: C->\mathrm{Hilb}.Comment: Final version, to appear in Int. Journ. Math. (Added some references
and Subsection 1.2.) Latex2e, 21 page
Parameters for Twisted Representations
The study of Hermitian forms on a real reductive group gives rise, in the
unequal rank case, to a new class of Kazhdan-Lusztig-Vogan polynomials. These
are associated with an outer automorphism of , and are related to
representations of the extended group . These polynomials were
defined geometrically by Lusztig and Vogan in "Quasisplit Hecke Algebras and
Symmetric Spaces", Duke Math. J. 163 (2014), 983--1034. In order to use their
results to compute the polynomials, one needs to describe explicitly the
extension of representations to the extended group. This paper analyzes these
extensions, and thereby gives a complete algorithm for computing the
polynomials. This algorithm is being implemented in the Atlas of Lie Groups and
Representations software
The Impact of Non-Equipartition on Cosmological Parameter Estimation from Sunyaev-Zel'dovich Surveys
The collisionless accretion shock at the outer boundary of a galaxy cluster
should primarily heat the ions instead of electrons since they carry most of
the kinetic energy of the infalling gas. Near the accretion shock, the density
of the intracluster medium is very low and the Coulomb collisional timescale is
longer than the accretion timescale. Electrons and ions may not achieve
equipartition in these regions. Numerical simulations have shown that the
Sunyaev-Zel'dovich observables (e.g., the integrated Comptonization parameter
Y) for relaxed clusters can be biased by a few percent. The Y-mass relation can
be biased if non-equipartition effects are not properly taken into account.
Using a set of hydrodynamical simulations, we have calculated three potential
systematic biases in the Y-mass relations introduced by non-equipartition
effects during the cross-calibration or self-calibration when using the galaxy
cluster abundance technique to constraint cosmological parameters. We then use
a semi-analytic technique to estimate the non-equipartition effects on the
distribution functions of Y (Y functions) determined from the extended
Press-Schechter theory. Depending on the calibration method, we find that
non-equipartition effects can induce systematic biases on the Y functions, and
the values of the cosmological parameters Omega_8, sigma_8, and the dark energy
equation of state parameter w can be biased by a few percent. In particular,
non-equipartition effects can introduce an apparent evolution in w of a few
percent in all of the systematic cases we considered. Techniques are suggested
to take into account the non-equipartition effect empirically when using the
cluster abundance technique to study precision cosmology. We conclude that
systematic uncertainties in the Y-mass relation of even a few percent can
introduce a comparable level of biases in cosmological parameter measurements.Comment: 10 pages, 3 figures, accepted for publication in the Astrophysical
Journal, abstract abridged slightly. Typos corrected in version
- …
